B=2xy+7xyz-2xz vs x=3/7 ; y-z=5/2 ; y.z+-1
ai bik chỉ e vs
mơn <3
Tinh gia tri bieu thuc:
a)A=5x+8xy+5y voi x+y=2/5;xy=3/4
b)B=2xy+7xyz-2xz voi x=3/7;y-z=5/2;y.z=-1
Tính giá trị của biểu thức:
a) A =5x + 8xy +5y với x+y =2/5; x.y =-1
b) B =2xy +7xyz - 2xz với x = 3/7 ; y . z =-1.
\(a,A=5x+8xy+5y=(5x+5y)+8xy\)
\(=5(x+y)+8xy\)
\(=5\cdot\frac{2}{5}+8\cdot(-1)=2+(-8)=-6\)
\(b,B=2xy+7xyz-2xz\)
\(=2\cdot\frac{3}{7}y+7\cdot\frac{3}{7}yz-2\cdot\frac{3}{7}z\)
\(=\frac{6}{7}y+3yz-\frac{6}{7}z\)
\(=\frac{6}{7}y+3\cdot(-1)-\frac{6}{7}z\)
\(=\frac{6}{7}y+(-3)-\frac{6}{7}z\)
Làm nốt :v
a)
A=\(5\left(x+y\right)+8xy\)
\(=5.\frac{2}{5}+8.\left(-1\right)\)
\(=2-8\)
\(=-6\)
Vậy.......
hc tốt
5x + 8xy + 5y với x + y \(\dfrac{2}{5}\) ; x . y = \(\dfrac{3}{4}\)
2xy + 7xyz - 2xz với x = \(\dfrac{3}{7}\); y - z = \(\dfrac{5}{2}\) ; y . z = -1
5x + 8xy + 5y với x + y \(\dfrac{2}{5}\) ; x . y = \(\dfrac{3}{4}\)
2xy + 7xyz - 2xz với x = \(\dfrac{3}{7}\); y - z = \(\dfrac{5}{2}\) ; y . z = -1
Cho x, y, z là các số thực dương thỏa mãn: 2xy + 6yz + 2xz = 7xyz. Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{4xy}{x+2y}+\dfrac{9xz}{x+4z}+\dfrac{4yz}{y+z}\)
Đáp án: \(Min_A=7\) khi \(\left(x;y;z\right)=\left(2;1;1\right)\) Mình hỏi kết quả có đúng không?
Mình xin cảm ơn mọi người!
bài 1 : a ) 3/4x - 1/2 = 2( x- 4 ) + 1/4x
b) x-1/12 + x-1/20 + x-1/30 + x-1/42 + x-1/56 + x-1/72 = 16/9
c) 1 + 1/3 + 1/6 + 1/10 + ...........+ 2/x(x+1) = 4008/2005
bài 2 ;
a) A= 5x + 8xy + 5y , với x+y = 2/5 và xy= 3/4
b) B= 2xy + 7xyz - 2xz , với x = 3/7 : y + z = /2 và y . z = -1
GIÚP MÌNH VỚI . MÌNH CẢM ƠN TRƯỚC Ạ !!!!!!
\(\frac{3}{4}x-\frac{1}{2}=2\left(x-4\right)+\frac{1}{4}x\)
\(\Leftrightarrow\frac{3}{4}x-\frac{1}{2}=2\text{x}-8+\frac{1}{4}x\)
\(\Leftrightarrow\frac{3}{4}x-2\text{x}-\frac{1}{4}x=-8+\frac{1}{2}\)
\(\Leftrightarrow\frac{3-8-1}{4}x=\frac{-15}{2}\)
\(\Leftrightarrow-\frac{3}{2}x=-\frac{15}{2}\Leftrightarrow x=\frac{-15}{-3}=5\)
Vậy x = 5
\(\frac{x-1}{12}+\frac{x-1}{20}+\frac{x-1}{30}+\frac{x-1}{42}+\frac{x-1}{56}+\frac{x-1}{72}=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(\Rightarrow\left(x-1\right)=\frac{16}{9}\div\frac{2}{9}\)
\(\Rightarrow\left(x-1\right)=\frac{16}{9}\cdot\frac{9}{2}\)
\(\Rightarrow x-1=8\Rightarrow x=9\)
Vậy x = 9
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(\Rightarrow2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(\Rightarrow\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\div2\)
\(\Rightarrow\frac{x}{x+1}=\frac{2004}{2005}\)
\(\Rightarrow2005\text{x}=2004\left(x+1\right)\)
\(\Rightarrow2005\text{x}=2004\text{x}+2004\)
\(\Rightarrow2005\text{x}-2004\text{x}=2004\)
\(\Rightarrow x=2004\)
Vậy x = 2004
help mik vs tí nx mik nộp r
1, 2xy+3z+6y+xz
2, x^2-xy+x-y
3, x^2+2xz+2xy+4yz
4, xz+xt+yz+yt
5,x^2-2xy+tx-2ty
Rút gọn phân thức a) 2x² - 2xy / x²+x-xy-y b) x²-y²+z²+2xy/ x²-y²+z²+2xz
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
Tìm nghiệm nguyên của các phương trình
a/ 2x^2-xy-6y^2+13y-3x+7=0
b/ 3x^2+10xy+8y^2=21
c/ 2x^2+y^2+2z^2-2xy+2xz=12
d/ x^2+2y^2+3z^2+4t^2+2xy+2xz+2xt+4yz-2zt=10
e/ 3x^2y+5xy-8y-x^2-10x=4