Bài 1. Cho x; y; z là các số thực dương thỏa mãn: x + y + z = 1. Tìm giá trị lớn nhất của biểu thức:
P = \(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)
Bài 2: Giả sử các số x; y thỏa mãn: \(x^5+y^5=2x^2y^2\)
Chứng minh rằng: 1 - xy là bình phương của một số hữu tỷ
Bài 3: Cho \(\frac{n}{n^2-n+1}=a\). Tính P = \(\frac{n^2}{n^4+n^2+1}\)theo a.