Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi mai chinh

Bài 1. Cho x; y; z là các số thực dương thỏa mãn: x + y + z = 1. Tìm giá trị lớn nhất của biểu thức:

P = \(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

Bài 2: Giả sử các số x; y thỏa mãn: \(x^5+y^5=2x^2y^2\)

Chứng minh rằng: 1 - xy là bình phương của một số hữu tỷ

Bài 3: Cho \(\frac{n}{n^2-n+1}=a\). Tính P = \(\frac{n^2}{n^4+n^2+1}\)theo a.

Pham Quoc Cuong
12 tháng 4 2018 lúc 21:12

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

Pham Quoc Cuong
12 tháng 4 2018 lúc 21:24

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

nguyen thi mai chinh
12 tháng 4 2018 lúc 22:12

Cảm ơn bạn Phạm Quốc Cường.


Các câu hỏi tương tự
bùi thu linh
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Hatake Kakashi
Xem chi tiết
Lê Thanh Quang
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Đức Lộc
Xem chi tiết
Lê Trường Lân
Xem chi tiết
Thanh Do
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết