a, chứng tỏ rằng 102015 + 53 chia hết cho 9
b. tìm các số tự nhiên x; y sao cho : ( x+2)(y-1) =4
Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
mn bày e gấp
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Cho các số tự nhiên a,b thoả mãn 2a + 9b chia hết cho 11. Chứng minh rằng (a + 10b)(2a + 96)(3a + 8b)....(10a + 6) chia hết cho 11^10
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023.
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!