Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
Câu 6:
a) Cho a^n chia hết cho 5( với a,n ϵN*). Chứng tỏ rằng: a^2+2022 chia hết cho 5.
b) Tìm tất cả các dố tự nhiên x,y để: 4^x +2^3= 3^y
a/ Tìm các số tự nhiên x, y sao cho [ 2x + 1][ y- 5]= 12
b/tìm các số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c/ Chứng tỏ 12n + 1/ 30n + 2 là phân số tối giản
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
BÀI 1 chứng tỏ rằng
a) \(\left(10^n+8\right)\)chia hết cho 9\
b) cho A=\(3+3^2+3^3+3^4+3^5+3^6+3^7+3^9+3^{410}+3^{11}+3^{12}\)
chứng tỏ Achia hết cho 4 và A chia hết cho 13
bài 2 tìm các số tự nhiên x và y, sao cho:
a) (2x+1)*(y-3)=10
b) (3x-2)*(2y-3)=1
c) (x+1)*(2y-1)=12
d) x+6=y*(x-1)
chứng tỏ rằng
\(\left(7^n+1\right)\left(7^n+2\right)\)chia hết cho 3 với mọi số tự nhiên n
b) chứng tỏ rằng ko tồn tại các số tự nhiên x,y,z sao cho :
(x+y)(y+z)(z+x) + 2016 = \(2017^{2018}\)
Cho A = 3+32+33+...+398+399
Chứng tỏ rằng : A chia hết 39
Tìm các số tự nhiên a,b biết rằng a.b=6936 và ƯCLN(a,b)=34
Cho 3.x+5.y chia hết 7 . Chứng minh rằng x+4.y chia hết 7
Tìm số tự nhiên nhỏ nhất khác 5 vừa chia số đó cho 70,140,350,700 có cùng số dư là 5
Mình đang cần gấp ,mong giúp mình với