tồn tại hay không bộ ba các số nguyên x y z đồng thời thoả: x^2 = y-1; y^2 = z-1; z^2 = x-1
Giúp mình với TT
1. Tồn tại hay không các số hữu tỉ x,y thoả mãn x^2 + y^2 = 3
2. Tồn tại hay không các số hữu tủ x,y thoả mãn x^3 + 2y^3 = 4
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
có tồn tại hay ko 3 số nguyên x,y,z thoả mãn điều kiện
\(x^3+y^3+z^3=x+y+z+2020\)
Lời giải:
$x^3+y^3+z^3=x+y+z+2020$
$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$
$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$
Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$
$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$
Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.
Câu 1 : Tìm số dư khi chia :
A : (x^4 + y^4 ) : 8
B : (7.2^4 + 3 ) :8
Câu 2 : Chứng minh rằng không tồn tại bộ 3 số nguyên x , y , z thoả mãn x^4 + y^4 = 7.z^4 + 5
Giúp mình với ạ TT
1. Tồn tại hay không số hữu tỉ x,y thoả mãn x2 + y2 = 3
2. Tồn tại hay không số hữu tỉ x,y thoả mãn x3 + 2y3 = 4
Có tồn tại không bộ ba số nguyên x , y, z thỏa mãn :
10 x | 4x + 2y - 1 | +14 x | 16y - 4z + 1 | + 6 x | 36z + 8x - 3 | = 4024
Có tồn tại hay không các số nguyên x,y,z,t sao cho \(2019=\dfrac{x^2+y^2}{z^2+t^2}\)
Các bạn giải hết cho mình với nhé, mình cảm ơn nhiều<3
Giả sử tồn tại x, y, z, t thỏa mãn.
Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).
Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).
Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).
Bổ đề dc cm.
Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).
Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).
Đặt x = 3x', y = 3y', z = 3z', t = 3t'.
Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).
Cmtt, ta có \(x',y',z',t'⋮3\).
Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).
Do đó x = y = z = t = 0 (vô lí).
Vậy không tồn tại...