cho pt x^2-2 x-m . tìm m để pt có 2 nghiệm phân biệt x1; x2 thỏa mãn điều kiện (x1×x2+1)^2-2.(x1×x2)=0
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
cho pt -x^2+3x+m-1=0
a,tìm m để pt có 2 nghiệm dương phân biệt
b,tìm m để pt có 2 nghiệm x1,x2 tm x1^3+x2^3=18
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
Cho pt: x^3 - mx^2 -x +m=0
Tìm m để: a) pt có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x1^2 + x2^2 + x3^2 <= 2 (bé hơn hoặc bằng)
b) pt có 2 nghiệm phân biệt
c) pt có 3 nghiệm x1, x2, x3 sao cho 1/ x1 + 1/x2 + 1/x3 =4
Cho pt x X^2 +3x +m=0 . tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa x2=2x1
PT có 2 nghiệm phân biệt `<=> \Delta>0`
`<=>3^2-4m>0`
`<=>m<9/4`
Viet:
`x_1+x_2=-3` (1)
`x_1x_2=m` (2)
Theo đề: `x_2=2x_1 <=> 2x_1-x_2=0` (3)
Từ (1) và (3) ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-3\\2x_1-x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-2\end{matrix}\right.\)
Thay vào (2): `(-1).(-2) = m <=> m=2`
cho pt x^2 -2x+m-1=0
1;tìm m để pt có 1 nghiệm là 2
2; tìm m để pt có 2 nghiệm phân biệt x1;x2
2) có 2 nghiêm khi \(\Delta^,=1-m+1>0\Rightarrow m< 2\)
1) theo đề bài ta có x1=2
Theo viets ta có x1+x2=2 => x2 =1
\(x_1.x_2=m-1=2\Rightarrow m=3\)
Bạn làm sai rồi !
Đề cho 1 No chứ đâu phải là 2 No ?
Mình ghi tắt:[No là nghiệm]
Thông cảm mình ghi tắt quen tay~~@~~
x2 - 2x + m - 1 = 0 (1)
1) Thay x = 2 vào (1) ta có:
22 - 2.2 + m - 1 = 0
<=> 4 - 4 + m - 1 = 0
<=> m = 1
Vậy với m = 1 pt có 1 nghiệm là 2.
2) x2 - 2x + m - 1 = 0 là pt bậc 2 có a = 1; b = -2; c = m - 1
Δ = b2 - 4ac = (-2)2 - 4.1.(m - 1) = 4 - 4m + 4 = -4m + 8
Để pt có 2 nghiệm phân biệt thì Δ > 0 <=> -4m + 8 > 0 <=> -4m > -8 <=> m < 2
Vậy với m < 2 thì pt có 2 nghiệm phân biệt.
undefined cho pt :(m-1)x^2+2x+1=0 -
giải pt với m =-1 -tìm m để pt có 2 nghiệm phân biệt x1=2x2
ho pt x^2-x-2m=0 Tìm m để pt đã cho có 2 nghiệm phân biệt thoả mãn x1-x2=-2
Cho pt ( m - 3)x2 + (m + 5)x - m +7 =0
a) Tìm m để pt có nghiệm x1 = -1 ; rồi tìm x2
b) Chứng minh pt có 2 nghiệm phân biệt với mọi m.
a.
Do \(x_1=-1\) là nghiệm
\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)
\(\Rightarrow m-3-m-5-m+7=0\)
\(\Rightarrow m=-1\)
Theo định lý Viet:
\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)
b.
Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)
a.
Do x1=−1�1=−1 là nghiệm
⇒(m−3).(−1)2+(m+5).(−1)−m+7=0⇒(�−3).(−1)2+(�+5).(−1)−�+7=0
⇒m−3−m−5−m+7=0⇒�−3−�−5−�+7=0
⇒m=−1⇒�=−1
Theo định lý Viet:
x=−12
cho pt x^2-(m-1)x-4=0.tìm m để pt có 2 nghiệm phân biệt sao cho x1;x2 đạt giá trị nguyên
Lời giải:
** Bổ sung điều kiện $m$ nguyên.
Để pt có 2 nghiệm nguyên phân biệt thì $\Delta=(m-1)^2+16=a^2$ với $a\in\mathbb{Z}\neq 0$
$\Leftrightarrow 16=a^2-(m-1)^2=(a-m+1)(a+m-1)$
Vì $a-m+1, a+m-1$ là số nguyên và $a-m+1, a+m-1$ cùng tính chẵn lẻ nên ta có các TH:
$(a-m+1, a+m-1)=(2,8),(8,2), (-2,-8),(-8,-2), (4,4), (-4,-4)$
$\Leftrightarrow m\in\left\{4; -2; 1\right\}$
Cho pt : x^2-2?(m-1)x+m+1=0
a) GIẢI pt vs m=-4
b) Vs giá trị nào của m thì pt có 2 nghiệm phân biệt
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1=3x2