Cho 3 số x , y , z đồng thời thỏa mãn :
x + y + z = 1 ; x2 + y2 + z2 = 1 và x3 + y3 + z3 = 1
Tính giá trị của biểu thức : P = x2015 = y2015 + z2015
Cho x , y , z đồng thời thỏa mãn x + y + z = 1 ; x^2 + y^2 + z^2 = 1 ; x^3 + y^3 + z^3 = 1
Tính x^2021 + y^2021 + z^2021
\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)
Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị
\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)
cho x,y.z là 3 số thỏa mãn đồng thời: x+y+z=1; x^2+y^2+z^2=1;x^3+y^3+z^3=1. Hãy tính gt của bt :P= (x-1)^17+(y-1)^9+(z-1)^1997
Cho x , y , z đồng thời thỏa mãn x + y + z = 1 ; x^2 + y^2 + z^2 = 1 ; x^3 + y^3 + z^3 = 1
Tính x^2021 + y^2021 + z^2021
Ko sai bạn ey
{ x + y + z = 1 (1)
{ x² + y² + z² = 1 (2)
{ x³ + y³ + z³ = 1 (3)
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0
(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0
⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0
@ Nếu x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0
⇒ S = 1
Tương tự cho trường hợp y + z = 0 và z + x = 0
Giải cách lớp 7 được ko bạn ????
Tìm các số thực x,y,z thỏa mãn đồng thời các điều kiện x-1/2=y+1/3=t-3/5 và 2x+y-z
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
Tìm 3 số nguyên tố x,y,z đồng thời thỏa mãn x - y , y - z , x - z là các số nguyên tố.
Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này
cho các số x,y,z thỏa mãn đồng thời :x+y+z=1 ; x2 + y2 + z2 =1 và x3 + y3 + z3 = 1. tính tổng
S = x2013 + y2015 + z2017 +2019
ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3
= x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)
= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1
=> x+y = 0 hoặc xy +z = 0
Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013)
Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1
x = 1 => z = -y làm tương tự như trên
* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ
Cho 3 số x, y, z thỏa mãn đồng thời 3 điều kiện sau
a) xy+x+y=3
b) yz+y+z=8
c) xz+z+x=15
Tính P=x+y+z
ta có: xy+x+y = 3
=> xy +x +y +1 =4
=> (x+1).(y+1) = 4 (1)
tương tự, ta có: (y+1).(z+1)= 9 (2)
(x+1).(z+1) = 16 (3)
Nhân (1);(2);(3) lại vs nhau
được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)
TH1: (x+1).(y+1).(z+1) = 24
=> 4.(z+1)=24
=> z+1 = 6 => z = 5
mà yz +y +z = 8
=> 6y + 5 = 8 => y = 1/2
mà xz+z+x = 15
=> 6x + 5 = 15 => x = 5/3
=> P = 5/3 +1/2 + 5 = 43/6
TH2: (x+1).(y+1).(z+1) = -24
...
bn cũng lm tương tự như TH1 nha!
tìm số tự nhiên x,y,z thỏa mãn đồng thời \(\left(x-1\right)^3+y^3-2z^3=0\)và x + y + z - 1 là số nguyên tố