a) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
b) Cho x-y=m; x^2+y^2=n. Tính x^3-y^3 theo m và n
cho 2 góc kề bù có số đo là x và y tính x;y biết .
A) x;y tỉ lệ thuận với 2 và 3
B) x;y tỉ lệ nghịch với 2 và 3
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{180}{5}=36\)
Do đó: x=72; y=108
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
Cho x+y=a và x^2+ y^2=b. Tính x^3+y^3 theo a và b
HELP MEEEEEEEEEEEEEEEEEEEEEE!
1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải
(x+y)^2=x^2+y^2+2xy => xy= -3
x^3+y^3=(x+y)^3-3xy(x+y) = 26
2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)
(x+y)^2=a^2
=> x^2 +2xy +y^2=a^2
=> b+2xy=a^2
=> xy=\(\frac{a^2-b}{2}\)
Thay (1) vào đó ta có:
x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-xy\right)\)
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
a) Cho x+y=1.Tính A=x3+y3+3xy
b) Cho x-y=1.Tính B=x3-y3-3xy
c) Cho a+b=1.Tính M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
d) Cho x+y=2 và x2+y2=10.Tính x3+y3
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
Tính gt của biểu thức:
A. Cho x+y=1. Tính x^3+y^3+3xy
B. Cho x-y=1. Tính x^3-y^3-3xy
C. Cho a+b =1. Tính M= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
D. Cho x+y= 2 và x^2+y^2=10. Tính x^3+y^3
Các bài này đưa về dạng Hằng đẳng thức là được . Làm ra dài lắm bạn ạ !
A. \(x+y=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\cdot\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
B. \(x-y=1\Rightarrow\left(x-y\right)^3=1\Rightarrow x^3-3x^2y+3xy^2-y^3=1\)
\(\Rightarrow x^3-3xy\cdot\left(x-y\right)-y^3=1\)
\(\Rightarrow x^3-3xy-y^3=1\)
C. \(M=a^3+b^3+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(M=a^3+b^3+3ab\left(1-2ab\right)+6a^2b^2=a^3+b^3+3ab-6a^2b^2+6a^2b^2\)
\(M=a^3+b^3+3ab=1\)(Theo hệ quả câu A).
D. Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)
Mà, \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow2^3=x^3+y^3+3\left(-2\right)\cdot2\Leftrightarrow x^3+y^3=8+12=20\)
Cho A=(x+y)(x^2+y^2)(x^3+y^3) biết x+y=7 và xy=10. tính
Bài 1: Rút gọn rồi tính giá trị của mỗi biểu thức sau:
a) M = 1/2 x²y . (-4)y
khi x + √2 ; y = √3
b) N = xy √5x²
khi x = -2; y = √5
Bài 2 : Tính giá trị tổng 4 đơn thức khi x = -6; y= 15
: 11x²y³ ; 10/7x²y³; -3/7x²y³; -12x²y³
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0