Cho a,b,c là 3 cạnh của 1 tam giác; x,y,z là 3 số thỏa mãn điều kiện ax+by+cz=0
Chứng minh: xy+yz+zx\(\le0\)
Cho a,b,c là 3 cạnh của 1 tam giác chứng minh: 1/a+b; 1/b+c; 1/c+a cũng là ba cạnh của 1 tam giác
Cho a,b,c là 3 cạnh của tam giác. chứng minh 1/a+b ; 1/b+c; 1/a+c là ba cạnh của tam giác
Ta có a + b > c ; b + c > a ; a + c > b
\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Vậy ...
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác
cho a,b,c là 3 cạnh của một tam giác ABC
(1+b/a)(1+c/b)(1+a/c)=8
cmw a,b,c là 3 cạnh của 1 tam giác đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\) \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)
\(\Leftrightarrow\) \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)
\(\Leftrightarrow\) \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)
\(\Leftrightarrow\) \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)
\(\Leftrightarrow\) \(a-b=c-b=c-a\) \(\Leftrightarrow\) \(a=b=c\)
Với \(a,b,c\) là \(3\) cạnh của \(\Delta ABC\) thì \(\Delta ABC\) đều
Vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b>c;b+c>a;c+a>b\\a+b;b+c;c+a< a+b+c\end{cases}}\)
Ta có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+c+a+c}=\frac{2}{2\left(a+c\right)}=\frac{1}{a+c}\)
Chứng minh tương tự , ta được: \(\frac{1}{b+c}+\frac{1}{c+a}>\frac{1}{a+b}\)
\(\frac{1}{c+a}+\frac{1}{a+b}>\frac{1}{b+c}\)
\(\Rightarrowđpcm\)
cho â,b,c là 3 cạnh của 1 tam giác và \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=8abc\)
cmr a,b,c là 3 cạnh của 1 tam giác đều
3 cạnh của một tam giác là ba số dương
áp dụng bất đẳng thức cauchy cho hai số dương
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8abc\)\
Dấu "=" xảy ra khi a = b = c
mà a,b,c là 3 cạnh của một tam giác đều => a=b=c => (a+b)(b+c)(c+a)=8abc
a,b,c là 3 cạnh tam giác nên a>0,b>0,c>0
\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2=8abc\)
\(\Leftrightarrow a^2b+bc^2+ab^2+ac^2+a^2c+ac^2-6abc=0\)
\(\Leftrightarrow\left(a^2b+bc^2-2abc\right)+\left(ab^2+ac^2-2abc\right)+\left(a^2c+b^2c-2abc\right)=0\)
\(\Leftrightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2=0\)
Mà b>0;(a-c)^2>=0 => b(a-c)^2>=0;
a>0;(b-c)^2>=0 => a(b-c)^2 >=0;
c>0;(a-b)^2>=0 => c(a-b)^2>=0
Do đó: \(b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a-c=0\\b-c=0\\a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=c\\b=c\\a=b\end{cases}}}\Leftrightarrow a=b=c\)
=> a,b,c là 3 cạnh của một tam giác đều
1. Gọi a,b,c là số đo 3 cạnh của tam giác cho biết: a3+b3+c3-3abc=0. Hỏi tam giác này là tam giác gì?
\(a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(=>a+b+c\ne0\)
\(=>a^2+b^2+c^2-ab-bc-ac=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)
Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)
Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)
Vậy tam giác đã cho là tam giác đều
Cho 3 số a, b, c. Hỏi 3 số đó là cạnh của tam giác vuông, tam giác thường hay không phải là 3 cạnh của tam giác?
Tham khảo
Program Bai1;
Uses crt;
Var a,b,c:integer;
Begin
CLRSCR;
Write('a='); Readln(a);
Write('b='); Readln(b);
Write('c='); Readln(c);
If (a*a=b*b+c*c) then Write('a,b,c la cac canh cua 1 tam giac vuong')
else('a,b,c khong phai la cac canh cua 1 tam giac vuong');
Readln
END.
Bài 1:Cho a=4m+8n+9p
b=m+4n+4p
c=4m+7n+8p
Với m,n,p là độ dài 3 cạnh của 1 tam giác vuông(p là cạnh huyền)
CMR a,b,c cũng là độ dài 3 cạnh của 1 tam giác vuông
Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên
p2 = m2 + n2
Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2
= - n2 + p2 - m2 = 0
=> a2 = b2 + c2
Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a
Cho abc là 3 độ dài các cạnh của một tam giác có chu vi là 1 thỏa mãn a/1-a + b/1-b + c/1-c = 3/2.Chứng minh tam giác đó là tam giác đều.Giúp tớ nhanh nhé!Cảm ơn nhiều!
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.