cho ΔABC vuông tại A có đường cao AH.Gọi D là trung điểm của AC; vẽ DE vuông góc với BC tại E
chứng minh: EB2 - EC2 =AB2
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Gọi I là trung điểm của AC, M là điểm đối xứng với H qua I. Tứ giác AHCM là hình gì? Vì sao?
1. Cho tam giác ABC vuông tại A(AB<AC)đường cao AH.gọi I là trung điểm của AC,M là điểm đối xúng với H qua I
a, tứ giác AHCM là hình gì?vì sao?
b, biết HI=5cm,HC=8cm.tính diện tích tứ giácAHCM
c, tam giác vuông ABC có thêm điều kiện gì để tứ giác AHCM là hình vuông
a: Xét tứ giác AHCM có
I là trung điểm của AC
I là trung điểm của HM
Do đó: AHCM là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCM là hình chữ nhật
cho tam giác ABC vuông tại A có đường cao AH.Gọi M và N lần lượt là trung điểm của BC và AB.Gọi D là giao điểm của MN và AH.Từ H kẻ các đường vuông góc với AC và AB lần lượt tại E và F.CMR :
a,AM vuông góc EF
b,EF song song BD
20. Cho ΔABC vuông tại A, trung tuyến AM. Kẻ MD⊥AB tại D, ME⊥AC tại E.
a, Cm ADME là hình chữ nhật
b, Lấy điểm I sao cho D là trung điểm của IM. Tứ giác AMBI là hình gì?
c, Tìm điều kiện của ΔABC để tứ giác AMBI là hình vuông
d, Vẽ đường cao AH của ΔABC, kẻ HP⊥AB, HQ⊥AC. Cm PQ⊥AM
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b; Xét ΔABC có
M là trung điểm của BC
MD//AC
=>D là trung điểm của AB
Xét tứ giác AMBI có
D là trung điểm chung của AB và MI
=>AMBI là hình bình hành
mà MA=MB
nên AMBI là hình thoi
c: AMBI là hình vuông
=>góc AMB=90 độ
Xét ΔABC có
AM vừa là đường cao, vừa là trung tuyến
=>ΔABC cân tại A
=>AB=AC
Cho tam giác ABC vuông tại A có đường cao AH.Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB,AC.
a) Chứng minh rằng AH=DE
b) Gọi I là trung điểm của HB,K là trung điierm của HC.Chứng minh rằng DI//EK
Cho tam giác ABC vuông tại A, đường cao AH.Gọi M,N lần lượt là trung điểm của AC và HC
c/m HB.HC=4MN2
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông cho tam giác $ABC$ vuông tại $A$, đường cao $AH$:
$HB.HC=AH^2(1)$
Mặt khác:
$M,N$ là trung điểm $AC,HC$ nên $MN$ là đường trung bình của tam giác $AHC$ ứng với cạnh $AH$
$\Rightarrow MN=\frac{1}{2}AH$ hay $AH=2MN(2)$
Từ $(1);(2)\Rightarrow HB.HC=AH^2=(2MN)^2=4MN^2$
Ta có đpcm.
ho ΔABC vuông tại A, đường cao AH. Gọi M là trung điểm của BC. Vẽ MD ⊥ AB tại D, ME ⊥ AC tại E.
a, CMR: ADME là hình chữ nhật
b, CMR: CMDE là hình bình hành
c,vẽ đường cao AH của ΔABC , qua A vẽ đường song song với DH cắt DE tại K. CMR:HK⊥AC
(giúp mình câu c với ạ)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
DO đó: MD là đường trung bình
=>MD//CE và MD=CE
hay CMDE là hình bình hành
Gợi ý câu c)
Bước 1: c/m tam giác DHE vuông tại H =>AK vuông góc với HE
Có DH=1/2 AB; HE=1/2 AC;DE=1/2 BC; AB2+AC2=BC2
Bước 2: c/m K là trực tâm của tam giác AHE
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn