Cho ΔABC , kẻ trung tuyến AM và BN . Trên tia đối của tia MA lấy điểm D sao cho MA=MD ; trên tia đối của tia NB lấy điểm E sao cho NB = NE .CM
a) Hai tam giác AMB và DMC bằng nhau
b) AB=CE
c) 3 điểm D,C,E thẳng hàng
cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Tính số đo góc ABD.
b. Chứng minh ΔABC = ΔBAD
c. So sánh độ dài AM và BCho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh ΔABC = ΔBAD
Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
Cho tam giác nhọn ABC. Đường trung tuyến AM (M Î BC). Trên tia đối của tia MA lấy điểm D sao cho MA = MD a) Chứng minh DMAB = DMDC. b) Chứng minh CD // AB. c) Kẻ đường trung tuyến BN (N Î AC). Trên tia đối của tia NB lấy điểm E sao cho NB = NE. Chứng minh ba điểm E, C, D thẳng hàng.gấp ạ,giúp m voi.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
Cho ΔABC , kẻ trung tuyến AM và BC . Trên tia đối của tia MA lấy điểm D sao cho MA=MD ; trên tia đối của tia NB lấy điểm E sao cho NB = NE .CM
a) Hai tam giác AMB và DMC bằng nhau
b) AB=CE
c) 3 điểm D,C,E thẳng hàng AI LÀM ĐC MÌN TICK CHO , NHANH
Cho ΔABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MÀ lấy điểm D sao cho MD=MA
a. Chứng minh: ΔAMC= ΔDMB
b. Tính số đo góc ABD
c. So sánh độ dài AM và BC
Cho tam giác cân tại A , kẻ đường trung tuyến AM . Trên tia đối của MA lấy điểm D sao cho MA = MD . Chứng minh AB song song với Dc
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB//DC
Cho ΔABC có góc A=90 độ, AB= 6cm, AC= 8cm. Kẻ đường trung tuyến AM, trên tia đối của tia MA lấy điểm D sao cho MD= MA
a. Tính độ dài các đoạn thẳng BC, DC, AM
b. Chứng minh rằng: DC ⊥ AC
c. Chứng minh rằng: góc MAC > góc MAB
Giúp mik làm nhanh ạ, vẽ hình giùm mik ạ
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=6cm(gt)
nên DC=6cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{10}{2}=5\left(cm\right)\)
Vậy: BC=10cm; DC=6cm; AM=5cm
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. So sánh độ dài AM và BC.
Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Cho ΔABC có AC > AB, M là trung điểm của BC. Nối aM, trên tia đối của MA lấy điểm D sao cho MA = MD. Nối BD. So sánh \(\widehat{BAM}\) và \(\widehat{CAM}\)
Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>AB=DC
mà AB<AC
nên CD<CA
Xét ΔCDA có CD<CA
mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA
nên \(\widehat{CAD}< \widehat{CDA}\)
mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)
nên \(\widehat{BAM}>\widehat{CAM}\)
Cho ΔABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a. Chứng minh: ΔABM = ΔDCM
b. Chứng minh: AB // DC
c. Kẻ BE ⊥ AM ( E ∈ AM) , CF ⊥ DM (F ∈ DM) . Chứng minh: M là trung điểm của EF
a)
Xét ΔABM và ΔDCM có:
MB = MC (gt)
∠AMB = ∠DCM (đối đỉnh)
MA = MD (gt)
Vậy ΔABM = ΔDCM (c-g-c)
b)
Từ ΔABM = ΔDCM (chứng minh câu a)
Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)
Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong
Vậy AB // DC (đpcm)
c)
Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)
Có: MB = MC (gt)
∠AMB = ∠DMC (đối đỉnh)
Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)
Suy ra: ME = MF (hai cạnh tương ứng)
Vậy M là trung điểm của EF (đpcm)