cho tam giác ABC nhọn có góc B = 70 độ ; góc C = 50 độ . H là trực tâm ; O là giao điểm của 3 đường trung trực ; M là trung điểm của BC . Lấy D : M là trung điểm của OD . Tính góc AHD ?
1.Cho 2 tam giác bằng nhau ABC và MNP có A^ = 50 độ và B^ = 70 độ.Số đo góc C là bao nhiêu?2.Cho 2 tam giác ABC và MNP có A^ = M^ = 90 độ, B^ = N^. Cần điều kiện gì để 2 tam giác ABC và MNP bằng nhau theo trường hợp cạnh góc vuông - góc nhọn?3.Cho tam giác ABC có góc A là góc tù,B^ > C^.Trong các khẳng định sau khẳng định nào đúng?A.AB > AC > BC
B.AC > AB > BC
C.BC > AB > AC
D>BC > AC > AB4.Cho tam giác MNP có MN = 5 cm , NP = 4 cm , MP = 6cm.Trong các khẳng định sau,khẳng định nào đúng?A. M^ > N^ >P^
B.N^ > P^ > M^
C.M^ > P^ > N^
D.N^ > M^ > P^
Cho tam giác ABC cân tại A.Kẻ AD vuông góc với BC.Chứng minh rằng :a) Tam giác ADB = tam giác ADCb) AD là tia phân giác của góc A
Câu 1: Số đo góc C là 60 độ
Câu 2: Thiếu điều kiện AB=MN
Câu 3: Chọn C
Câu 4: Chọn B
Ta gọi tam giác có ba góc nhọn. Cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. Biết góc A =70 độ. Tính số đo các góc ACE, BHC
Cho tam giác ABC có A = 70%, B – C = 400. Tính số đo góc B, góc C của tam giác. Tam giác đã cho là tam giác vuông, nhọn hay từ?
Xét tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( tổng 3 góc trong tam giác)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=180^0-70^0=110^0\)
Xét tam giác ABC có:
\(\left\{{}\begin{matrix}\widehat{B}+\widehat{C}=110^0\\\widehat{B}-\widehat{C}=40^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+40^0\right):2=75^0\\\widehat{C}=\left(110^0-40^0\right):2=35^0\end{matrix}\right.\)
Ta có: \(\widehat{C}< \widehat{A}< \widehat{B}< 90^0\)
Vậy tam giác ABC là tam giác nhọn
cho tam giác abc có ba góc nhọn và ab < ac trên cạnh ac lấy điểm d sao cho ab = ad
a) cho góc bac = 70 độ góc abc = 67 độ tính góc acb
b) chứng minh abd là tam giác cân
c) từ b kẻ be vuông góc với ad tại e từ d kẻ df vuông góc với ab tại f chứng minh tam giác abe = tam giác adf
d) chứng minh ef song song với bd
giúp mik với
a: \(\widehat{ACB}=180^0-70^0-67^0=43^0\)
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
c: Xét ΔABE vuông tại E và ΔADF vuông tại F có
AB=AD
\(\widehat{BAE}\) chung
Do đó: ΔBAE=ΔDAF
d: Xét ΔABD có AF/AB=AE/AD
nên FE//BD
cho tam giác abc có góc a bằng 70 độ góc b bằng 55 độ tam giác abc có phải tam giác cân không vì sao
tam giác ABC tam giác cân vì có góc b và góc c bằng nhau vì a+b+c=180 độ
=> c=180-55-70=55
=>b=c
\(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-70^0-55^0=55^0\)
Ta thấy \(\widehat{B}=\widehat{C}\left(=55^0\right)\)
Nên tam giác ABC cân tại A
tam giác đó là tam giác cân vì
góc c=180-55-70=55 độ
tam giác cân là tam giác có 2 góc ở đáy bằng nhau và 2 cạnh bên bằng nhau
mà tam giác abc có 2 góc ở đáy bằng nhau (55=55)
2) Cho tam giác ABC có Â = 70 độ, B và C là các góc nhọn. Kẻ đường vuông góc vứi AB tại B, đường vuông góc với AC tại C, chúng cắt nhau ở K. Tính BKC
Tứ giác ABKC có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{K}=360^0\)
\(\Rightarrow\widehat{K}=360^o-70^o-90^o-90^o\)
\(\Rightarrow\widehat{K}=110^o\)
Vậy \(\widehat{BKC}=110^0\)
cho tam giác ABC nhọn có góc B = 70 độ ; góc C = 50 độ . H là trực tâm ; O là giao điểm của 3 đường trung trực ; M là trung điểm của BC . Lấy D : M là trung điểm của OD . Tính góc AHD ?
cho tam giác ABC cân tại A có góc B = 70 độ. Số đo các góc của tam giác ABC
Vì tam giác ABC cân A nên góc B = góc C = 70
Góc A + góc B + góc C = 180° ( tổng 3 góc trong tam giác)
=> Góc A = 180 - 70 x 2 = 40°
Bài 1.Cho tam giác nhọn ABC, trực tâm H. Gọi K là điểm đối xứng với H qua BC.
a) Chứng minh hai tam giác BHC và BKC bằng nhau.
b) Cho góc BAC=70 độ. Tính số đo góc BKC
a) Ta có:
K đối xứng với H qua BC
⇒ BC là trung trực của HK
⇒ BH=BK; CH=CK
Xét ΔBHC và ΔBKC có:
BH=BK (cmt)
CH=CK (cmt)
BC: cạnh chung
Do đó ΔBHC = ΔBKC(c.c.c)
b) Ta có:
ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)
ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)
⇒ ˆBHC = ˆBHK + ˆCHK
= ˆBAH + ˆABH + ˆCAH + ˆACH
= ˆBAC + ˆABH + ˆACH
Ta lại có:
ˆBAC+ˆABH = 90o (BH⊥AC)
ˆBAC+ˆACH = 90o (CH⊥AB)
⇒2ˆBAC+ˆABH+ˆACH=180o
⇒ˆABH+ ˆACH = 180o− 2ˆBAC
Do đó:
ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o
Mặt khác:
ˆBHC = ˆBKC (ΔBHC = ΔBKC)
⇒ˆBKC=110