Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ HUY ANH
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 2 2020 lúc 19:50

\(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đến đây có 2 cách:

Cách 1:Đặt k.Dài,tự làm

Cách 2:

Áp dụng DTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Khách vãng lai đã xóa
IS
21 tháng 2 2020 lúc 19:56

ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)

ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)

từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)

Khách vãng lai đã xóa
Chu Công Đức
22 tháng 2 2020 lúc 8:51

Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)(1)

    \(c^2=bd\)\(\Rightarrow\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)( vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( cùng bằng \(\left(\frac{a}{b}\right)^3\)) ( đpcm )

Khách vãng lai đã xóa
Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Ngọc Tho
12 tháng 2 2018 lúc 7:59

Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)

Cỏ dại
Xem chi tiết
ST
14 tháng 10 2017 lúc 17:33

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Ta lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Nguyễn Thị Thanh Trúc
Xem chi tiết
la thi thu phuong
8 tháng 10 2015 lúc 6:16

Ta có : (a3 +b3+c3)/(b+c3 +d3

= a/b= b3/c3=c3/d3

mà b=ac ; c2 = bd

=>b3/c3 =bac/cbd = a/d

=>(a3 +b3+c3)/(b+c3 +d3) /a/d

BTS BEING BTS
Xem chi tiết
Phạm Ngọc Diệp
Xem chi tiết
Cao Anh Hoang
6 tháng 12 2018 lúc 20:50

quá đơn giản 

cho 5 k giải cho

(mình trong đội tuyển toán đó nhe nên làm theo đi)

Hoàng Văn Anh
Xem chi tiết
Xem chi tiết
Buddy
20 tháng 2 2021 lúc 21:33

1)a.d=b.c

Lee Hà
20 tháng 2 2021 lúc 21:34

Hai phân số c/d (với b,d đều khác 0) bằng nhau nếu:

 

1)  a.d=b.c

2)  a.b=c.d

3)  a.c=b.d

Lưu Quang Trường
20 tháng 2 2021 lúc 21:36

Hai phân số cdcd (với b,d đều khác 0) bằng nhau nếu:

1)  a.d=b.c

2)  a.b=c.d

3)  a.c=b.d

Nguyen Thi My Duyen
Xem chi tiết
Nguyệt
3 tháng 11 2018 lúc 16:55

cm: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(a+c=2b\Rightarrow2bd=\left(a+c\right).d=c.\left(b+d\right)\)

\(\Rightarrow ad+cd=cb+cd\)

\(\Rightarrow ad=cb\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(dpcm\right)\)

p/s: vì bn vt sai đề nên đề cx có thể là cm: \(\frac{a}{c}=\frac{b}{d},\frac{a}{b}=\frac{c}{d},....vv\)

nên cách làm cứ thay a+c=2b rồi làm chứ mk cx ko bt đề có pk thế ko =)