cho phân số \(\frac{a}{b}\)và \(\frac{c}{d}\)có b+c=a
(a,b,c thuộc Z ; b khác 0; c khác 0)
chứng tỏ rằng tích của hân số này = tổng của chúng
thử lại với a=8
b=-3
Cho phân số \(\frac{a+b}{c+d}\) ( a , b , c , d thuộc Z ) Biết cả tử và mẫu của phân số chia hết cho k thuộc Z . Chứng minh ( ad - bc ) chia hết cho k
Lời giải:
Ta có các điều sau:
\(\left\{\begin{matrix} a+b\equiv 0\pmod k\\ c+d\equiv 0\pmod k\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a\equiv -b\pmod k\\ d\equiv-c\pmod k\end{matrix}\right.\)
Áp dụng tính chất nhân của mo- đun:
\(\Rightarrow ad\equiv (-b)(-d)=bd\pmod k\) . Suy ra $ad-bc$ chia hết cho $k$
Do đó ta có đpcm
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
Cho phân số \(\frac{A}{B}\) và phân số \(\frac{a}{c}\) có b + c = a (a,b,c thuộc Z, b khác 0, c khác 0).
Chứng tỏ rằng tích của 2 phân số nay bằng tôngr của chúng. Thử lại với a=8, b=3.
a)Giả sử\(x=\frac{a}{m},y=\frac{b}{m}\) (a,b,m thuộc Z,m>0) và x < y. Hãy chứng tỏ rằng nếu chọn\(z=\frac{a+b}{m}\) thì ta có x<z<y
Hướng dẫn sử dụng tính chất : Nếu a,b,c thuộc Z và a<b thì a+c<b+c.
b)Hãy chọn ba phân số nằm xen giữa các phân số \(\frac{1}{2}\) và \(\frac{5}{2}\)
Cho x=\(\frac{a}{b};\ y=\frac{c}{d};\ z=\frac{a}{b}+\frac{c}{d}\left(a,b,c,d\ thuộc\ Z\ ;\ b>0,d>0\right)\)
Cho M=\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)
(a,b,c,d thuộc N*)
cmr m thuộc Z (2<A<3)
cho phân số \(\frac{a}{b}\)và \(\frac{c}{d}\)có b+c=a (a,b,c thuộc z b khác 0,c khác 0)
chứng tỏ rằng tích cua p/số này bằng tổng của chúng
thử lại với a=8
b=-3
Cho \(\frac{a}{b}\), \(\frac{c}{d}\)là 2 phân số tối giản.
\(\frac{a}{b}\)+\(\frac{c}{d}\)thuộc Z
Chứng minh rằng |b| = |d|
Cho a,b,c,d thuộc Z và \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng :
\(\frac{2018\cdot a+c}{2018\cdot b +d}< \frac{c}{d}\)
Ta có:a/b<c/d<=>a.d<b.c
<=>2018a.d<2018b.c
<=>2018a.d+c.d<2018b.c+d.c
<=>d(2018a+c)<c(2018b+d)
<=>2018a+c/2018b+d<c/d(dpcm)
Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)
\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)
\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)