Cho tg ABC có AB=AC. Vẽ phân giác AD. Trên tia AD lấy điểm E sao cho AD=DE. Chứng minh:
a) và DB=DC ; b) BE//AC ; c) EDBC.
d)Trên nửa mặt phẳng bờ EC ( không chứa B) kẻ đoạn EF// và=BC, chứng minh: A,C,F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho
AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB=DE;BF=CE
b) Ba điểm F ,D ,E thẳng hàng
c) BE// FC; AD⊥FC
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra DB=DE
Ta có: AB+BF=AF
AE+EC=AC
mà AF=AC
và AB=AE
nên BF=EC
b: Xét ΔBDF và ΔEDC có
BF=EC
\(\widehat{DBF}=\widehat{DEC}\)
BD=DE
Do đó: ΔBDF=ΔEDC
Suy ra: \(\widehat{BDF}=\widehat{EDC}\)
=>\(\widehat{BDF}+\widehat{BDE}=180^0\)
=>E,D,F thẳng hàng
c: Xét ΔAFC có
AB/AF=AE/AC
nên BE//FC
Ta có: ΔACF cân tại A
mà AD là đường phân giác
nên AD là đường cao
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho
AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB DE BF CE = = ;
b) Ba điểm F D E , , thẳng hàng
c) BE FC AD FC / / ; ⊥
Bạn vẽ hình giúp mình nhé!
a. Xét \(\Delta ABD\) và \(\Delta AED\) có: \(\left\{{}\begin{matrix}AB=AE\left(gt\right)\\\widehat{BAD}=\widehat{EAD}\left(AD.là.đường.phân.giác.của\widehat{A}\right)\\AD.là.cạnh.chung\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\) = \(\Delta AED\) (c-g-c)
\(\Rightarrow DB=DE\left(đpcm\right)\)
Lại có: \(AF=AC\Rightarrow AB+BF=AE+EC\)
Mà \(DB=DE\) \(\Rightarrow\)BF=EC (đpcm)
b. Ta có: \(\Delta ABD\)=\(\Delta AED\) \(\Rightarrow\widehat{ABD}=\widehat{AED}\)\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)
Xét \(\Delta BDF\) và \(\Delta EDC\) có: \(\left\{{}\begin{matrix}BD=DE\left(cmt\right)\\\widehat{FBD}=\widehat{CED}\left(cmt\right)\\FB=EC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta BDF\) = \(\Delta EDC\) (c-g-c)
\(\Rightarrow\widehat{FDB}=\widehat{CDE}\)
Mà \(\widehat{EDC}+\widehat{BDE}=180^o\) \(\Rightarrow\)\(\widehat{FDB}+\widehat{BDE}=180^o\) \(\Rightarrow F,D,E\) thẳng hàng (đpcm)
c. Ta có: \(AF=AC\Rightarrow\Delta AFC\) cân tại A \(\Rightarrow\widehat{AFC}=\dfrac{180-\widehat{A}}{2}\)
Lại có \(\Delta ABE\) cân tại A (AB=AE) \(\Rightarrow\widehat{ABE}=\dfrac{180-\widehat{A}}{2}\)
\(\Rightarrow\widehat{AFC}=\widehat{ABE}\) (nằm ở vị trí đồng vị) \(\Rightarrow\) BE//FC
Gọi \(H=AD\cap FC\left(H\in FC\right)\)
Xét \(\Delta AFC\) cân tại A có AH là đường phân giác vừa là đường cao
\(\Rightarrow AH\perp FC\) hay \(AD\perp FC\) (đpcm)
Cho △ABC có AB < AC. Kẻ tia phân giác AD của \(\widehat{BAC}\) (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh:
a) △BDF = △EDC
b) BF = EC
c) AD ⊥ FC
!!CÓ VẼ HÌNH!!
Cho tam giác ABC (AB<AC), vẽ tia phân giác AD của tam giác ABC. Trên cạnh AC lấy điểm E sao cho AE=AB.
a) Chứng minh tam giác ADB = tam giác ADE
b) Chứng minh AD là đường trung trực của BE
c) Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD=tam giác ECD
d) So sánh DB và DC
Cho tam giác ABC (AB<AC), vẽ tia phân giác AD của tam giác ABC. Trên cạnh AC lấy điểm E sao cho AE=AB.
a) Chứng minh tam giác ADB=tam giác ADE
b) Chứng minh AD là đường trung trực của BE
c) Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD=tam giác ECD
d) So sánh DB và DC
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
cho tam giác ABC (AB<AC), tia phân giác AD (D thuộc BC). Vẽ BE vuông AD (E thuộc AC) và H là giao điểm của AD và BE.
a, chứng minh ΔABH = ΔAEH
b, chứng minh tam giác BDE là tam giác cân
c, Trên tia đối của DE lấy K sao cho DC = DK. Chứng minh góc KBD = góc CED và A, B, K thẳng hàng
d, Chứng minh BE // KC
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
\(\widehat{BAH}=\widehat{EAH}\)
Do đó: ΔAHB=ΔAHE
b:
Ta có: ΔAHB=ΔAHE
=>AB=AE
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
=>ΔDBE cân tại D
c: Xét ΔBDK và ΔEDC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
DK=DC
Do đó: ΔBDK=ΔEDC
=>\(\widehat{KBD}=\widehat{CED}\)
Ta có: ΔBAD=ΔEAD
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{KBD}\)
\(=\widehat{AED}+\widehat{CED}\)
\(=180^0\)
=>A,B,K thẳng hàng
d: Ta có: ΔDBK=ΔDEC
=>BK=EC
Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)
nên BE//KC
cho tam giác ABC có AB<AC.Tia phân giác góc A cắt BC tại D.Trên AC lấy điểm E,sao cho AE=AB
a,CM DB=DE
b,CM AD vuông BE
c,Trên tia đối tia DA lấy điểm M. CM:tg BDM=tg EDM
a,Xét △AED và △ABD có
AE = AB (theo giả thiết)
EAD=BAD (theo giả thiết)
AD là cạnh chung
⇒△AED = △ABD (c.g.c)
⇒DE = DB (hai cạnh tương ứng)
b, gọi o là giao điểm của AD và BE
Xét △AEO và △ABO có
AE = AB (theo giả thiết)
EAO=BAO (theo giả thiết)
AO là cạnh chung
⇒△AEO = △ABO (c.g.c)
⇒AOE = AOB (hai góc tương ứng)
ta có : AOE + AOB = 180 độ (hai góc kề bù)
mà AOE = AOB
⇒AOE = AOB = 180 : 2 = 90
⇒ AO \(\perp\) EB hay AD \(\perp\) EB
c, vì AE = AB ⇒ △AEB cân tại A
⇒AEO = ABO
ta có : AEM = AEO + MEO
⇒MEO = AEM - AEO
ABM = ABO + MB
⇒MBO = ABM - ABO
mà AEO = ABO
⇒MEO = MBO
⇒△MEB cân tại M ⇒ME = MB
Xét △MEO và △MBO có
ME = MB (chứng minh trên)
MOE = MOB = 90 độ
MO là cạnh chung
⇒△MEO = △MBO (cạnh huyền - cạnh góc vuông)
⇒EMO = BMO (hai góc tương ứng)
Xét △BDM và △EDM có
ME = MB (chứng minh trên)
EMO = BMO (chứng minh trên)
MD là cạnh chung
⇒△BDM = △EDM (c.g.c)
mình trình bày rất mất thời gian nên nếu đúng thì tick mình nha
Cho tam giác ABC, đường phân giác AD. Trên tia AC lấy điểm E sao cho AE = AB. Chứng minh:
a) DB = DE;
b) AD là đường trung trực của BE.
Cho tam giác ABC, AB nhỏ hơn AC ,vẽ đường phân giác AD. Đường vuông góc với AD tại D cắt AC ở E
Trên tia DC lấy điểm I sao cho DI=DB .Chứng minh rằng ABIE là hình thang
Kéo dài DE cắt AB ở O,nối EI.
Tam giác AOE có AD là tia phân giác góc A mà AD cũng là đường cao ứng với cạnh OE
=>Tam giác AOE cân tại A
=>AD cũng là đường trung tuyến
=>OD=DE
=>Tam giác BDO=Tam giác IDE(c.g.c)
=>góc BOD=góc IED mà 2 góc này ở vị trí so le trong=>IE song song BO hay IE song song AB=>Tứ giác ABIE là hình thang