Bạn vẽ hình giúp mình nhé!
a. Xét \(\Delta ABD\) và \(\Delta AED\) có: \(\left\{{}\begin{matrix}AB=AE\left(gt\right)\\\widehat{BAD}=\widehat{EAD}\left(AD.là.đường.phân.giác.của\widehat{A}\right)\\AD.là.cạnh.chung\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\) = \(\Delta AED\) (c-g-c)
\(\Rightarrow DB=DE\left(đpcm\right)\)
Lại có: \(AF=AC\Rightarrow AB+BF=AE+EC\)
Mà \(DB=DE\) \(\Rightarrow\)BF=EC (đpcm)
b. Ta có: \(\Delta ABD\)=\(\Delta AED\) \(\Rightarrow\widehat{ABD}=\widehat{AED}\)\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)
Xét \(\Delta BDF\) và \(\Delta EDC\) có: \(\left\{{}\begin{matrix}BD=DE\left(cmt\right)\\\widehat{FBD}=\widehat{CED}\left(cmt\right)\\FB=EC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta BDF\) = \(\Delta EDC\) (c-g-c)
\(\Rightarrow\widehat{FDB}=\widehat{CDE}\)
Mà \(\widehat{EDC}+\widehat{BDE}=180^o\) \(\Rightarrow\)\(\widehat{FDB}+\widehat{BDE}=180^o\) \(\Rightarrow F,D,E\) thẳng hàng (đpcm)
c. Ta có: \(AF=AC\Rightarrow\Delta AFC\) cân tại A \(\Rightarrow\widehat{AFC}=\dfrac{180-\widehat{A}}{2}\)
Lại có \(\Delta ABE\) cân tại A (AB=AE) \(\Rightarrow\widehat{ABE}=\dfrac{180-\widehat{A}}{2}\)
\(\Rightarrow\widehat{AFC}=\widehat{ABE}\) (nằm ở vị trí đồng vị) \(\Rightarrow\) BE//FC
Gọi \(H=AD\cap FC\left(H\in FC\right)\)
Xét \(\Delta AFC\) cân tại A có AH là đường phân giác vừa là đường cao
\(\Rightarrow AH\perp FC\) hay \(AD\perp FC\) (đpcm)