Chứng minh các đẳng thức sau
1.a(b-c) - a(b+d)= -a(c+d) ; a,b,c,d nằm trong tập hợp Z
2. (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b); a,b,c,d nằm trong tập hợp Z
Chứng minh các đẳng thức sau:
a)(a-b)+(c-d)-(a+c)=-(b+d)
b)(a-b)-(c-d)+(b+c)=a+d
a)(a-b)+(c-d)-(a+c)=-(b+d)
Biến đổi vế trái
(a-b)+(c-d)-(a+c)
=a-b+c-d-a-c
=(a-a)+(c-c)-b-d
=-b-d
=-(b+d)
Vế trái bằng vế phải => Đẳng thức đã được chứng minh
b)(a-b)-(c-d)+(b+c)=a+d
Biến đổi vế trái
(a-b)-(c-d)+(b+c)
=a-b-c+d+b+c
=(b-b)+(c-c)+a+d
= a+d
Vế trái bằng vế phải => Đẳng thức đã được chứng minh
bài này cũng dễ thui
nhưng Nguyễn Tuấn Khải làm rồi nên thôi
bài của mk giống Nguyễn Tuấn Khải nên
mk đồng tình với Nguyễn Tuấn Khải nhe
chúc bn học giỏi@!
thanks
a, ( a - b ) + ( c - d ) - ( a + c ) = - ( b + d )
Ta có : VT = ( a - b ) + ( c - d ) - ( a + c )
= a - b + c - d - a - c
= - ( b + d ) = VP
=> ( a - b ) + ( c - d ) - ( a + c ) = - ( b + d )
b, ( a - b ) - ( c - d ) + ( b + c ) = a + d
Ta có : VT = ( a - b ) - ( c - d ) + ( b + c )
= a - b - c + d + b + c
= a + d = VP
=> ( a - b ) - ( c - d ) + ( b + c ) = a + d
Chứng minh các đẳng thức:
a) (a - b) + (c + d) = (a + c) - (b - d)
b) (a - b) - (c - d) = (a + d) - (b + c)
Các bạn trả lời nhanh hộ mình :)
a, (a-b) + (c+d)
= a-b + c+d
= (a+c) - (b-d)
=> (a-b) + (c+d) = (a+c) - (b-d)
b, (a-b) - (a-d)
= a-b - a + d
= (a+d) - (b-d)
=> (a-b) - (a-d) = (a+d) - (b-d)
\(a)\) \(\left(a-b\right)+\left(c+d\right)\)
\(=\)\(a-b+c+d\)
\(=\)\(\left(a+c\right)+\left(-b+d\right)\)
\(=\)\(\left(a+c\right)-\left(b-d\right)\)
Vậy ...
\(b)\) \(\left(a-b\right)-\left(c-d\right)\)
\(=\)\(a-b-c+d\)
\(=\)\(\left(a+d\right)+\left(-b-c\right)\)
\(=\)\(\left(a+d\right)-\left(b+c\right)\)
Vậy ...
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
a, a/b = c/d => a+b/c+d = a-b/c-d
=> a+b/a-b = c+d/c-d
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa) :
a) a+b/a-b = c+d/c-d
b)(a+b+c+d)*(a-b-c-d)=(a-b+c-d)8(a+b-c-d)
Chứng minh các đẳng thức sau :
A)(a+b)-(-a+b-c)+(c-a-b)=a-b+2c.
B)a(b-c)-a(b+d)=-a(c+d).
a) ( a + b ) - ( -a + b - c ) + ( c - a - b )
= a + b + a - b + c + c - a - b
= a - b + 2c ( đpcm )
b) a ( b - c ) - a ( b + d )
= a ( b - c - b - d )
= a ( -c - d )
= -a ( c + d ) ( đpcm )
Chứng minh các đẳng thức sau:
a) (-a + c - d) - (c - a + d)
b) (a + b). (a - b) = a ngũ 2 - b ngũ 2
a, thieu
b, (a + b)(a - b)
= a2 - ab + ab - b2
= a2 - b2
Chứng minh các đẳng thức sau :
a ) a ( b + c ) - b ( a - c ) = ( a + b ) c
b ) a ( b - c ) - a ( a + d ) = -a ( c + d )
Làm đúng tick
a) a(b + c) - b(a - c)
= ab + ac - ba + bc
= ac + bc
= (a + b)c
b) sorry bạn mình chưa học phần này
a) a ( b + c ) - b ( a - c ) = ab + ac - ab - bc
= [ ab + ( -ab ) ] [ ac + bc ]
= ac + bc
= c ( a + b )
b) Tương tự
a, VT= a(b + c) - b(a - c) = ab +ac - ab + bc = ac + bc = c(a+b)
=> VT=VP
=>đpcm
b, Câu b hình như sai đề : mình nghĩ là : a( b - c) - a(b+d) thì mới đúng .
nếu theo đề mới thì : VT= a( b - c) - a( b + d) = ab -ac -ab -ad = -ac - ad = -a (c+d)
=> VT =VP
=> đpcm
chứng minh đẳng thức a(b-c)-a(b+d)=-a(c+d)
ta có:a(b−c)−a(b+d)=−a(c+d)
VT(vế trái)=a(b−c)−a(b+d)
=ab−ac−ab−ad
=(ab−ab)−ac−ad
=0−a(c+d)
=−a(c+d)=VP(vế phải)
\(a\left(b-c\right)-a\left(b+d\right)\)
\(=a\left(b-c-b-d\right)\)
\(=a\left(-c-d\right)\)
\(=-a\left(c+d\right)\left(dpcm\right)\)
Ta có: a(b-c)-a(b+d)
=ab-ac-ab-ad
=-ac-ad=-(ac+ad)=-a(c+d)
Vì -a(c+d)=-a(c+d) nên a(b-c)-a(b+d)=-a(c+d)
Chứng minh các đẳng thức sau:
a) (a-b) + (c-d) = (a+c) - (b+d)
b) (a-b) - (c-d) = (a+d) - (b+c)
c) - (-a+b+c) + (b+c-1) = (b-c+6) - (7-a+b)+c
Ta có
\(\left(a-b\right)+\left(c-d\right)=a-b+c-d=\left(a+c\right)-\left(b+d\right)\)
b
\(\left(a-b\right)-\left(c-d\right)=a-b-c+d=\left(a+d\right)-\left(b+c\right)\)
c,
\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=\left(b-c+6\right)-\left(7-a+b\right)+c\)Nếu thấy bài làm của mình đúng thì tick nha ban.Nhân dịp đầu xuân năm mới mình chúc bạn vui vẻ mạnh khoẻ nha.
a) (a - b) + (c - d) = a - b + c - d = (a + c) - (b + d)
b) (a - b) - (c - d) = a - b - c + d = (a + d) - (b + c)
c) - (- a + b + c) + (b + c - 1) = a - b - c + b + c - 1 = a - 1
(b - c + 6) - (7 - a + b) + c = b - c + 6 - 7 + a - b + c = a - 1
\(\Rightarrow\) - (- a + b + c) + (b + c - 1) = (b - c + 6) - (7 - a + b) + c