cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB,AC , Lấy điểm D sao cho N là trung điểm MD . Chứng minh :
a) CD=AM
b) CD//AM
c)Tam giác MBC= Tam giác CDM
d)MN// BC ; MN=1/2 BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC a) Chứng minh tam giác AMB bằng tam giác AMC. b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AB//CD c) Chứng minh AC//BD
mik cần gấp
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)
cho tam giác ABC có AB=AC. M là trung điểm của BC
a) chứng minh: tam giác AMB = tam giác AMC
b) trên tia đối của tia MA lấy điểm D sao cho MA=MD. chứng minh AB song song CD
cho tam giác ABC có AB=AC , M là trung điểm của BC
a, chứng minh tam giác AMB= tam giác AMC
b trên tia đối MA ta lấy điểm D . sao cho MA=MD
c chứng minh AB // CD
Xét \(\Delta AMB\)VÀ \(\Delta AMC\)
AB=AC(gt)
<B=<C(tam giác ABC cân)
BM=MC(gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c-g-c\right)\)
Xét \(\Delta AMB\)và\(\Delta CMD\)có:
<AMB=<CMD(đối đỉnh)
AM=MD(gt)
MB=MC(gt)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
=>góc BAM=<CDM(2 góc tương ướng)
mà hai góc này ở vị trí so le trong
=> AB//CD
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
1. Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của MA lấy điểm N sao cho MN = MA
a, CM: tam giác AMB = tam giác NMC b, CM: tam giác AMC = tam giác NMB
c, CM: BN vuông góc với AB c, CM: CN // AB
2. Cho tam giác ABC có M, N lần lượt là trung điểm của AB, AC. Trên các tia đối của MC, NB lần lượt lấy các điểm E, F sao cho ME = MC, NF = NB.
a, CM: tam giác MBC = tam giác MAE b, CM: tam giác NBC = tam giác NFA
c, CM: AE // BC d, BC = AF
1.
Xét tam giác AMB và tam giác NMC có:
AM = NM (gt)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác NMC (c.g.c)
Xét tam giác AMC và tam giác NMB có:
AM = NM (gt)
AMC = NMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC = Tam giác NMB (c.g.c)
2.
Xét tam giác AME và tam giác BMC có:
AM = BM (M là trung điểm của AB)
AME = BMC (2 góc đối đỉnh)
ME = MC (gt)
=> Tam giác AME = Tam giác BMC (c.g.c)
=> AEM = BCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AE // BC
Xét tam giác ANF và tam giác CNB có:
AN = CN (N là trung điểm của AC)
ANF = CNB (2 góc đối đỉnh)
NF = NB (gt)
=> Tam giác ANF = Tam giác CNB (c.g.c)
=> AF = CB (2 cạnh tương ứng)
Cho tam giác ABC biết AB=AC=5cm,Gọi M là trung điểm của BC a) chứng minh :tam giác AMB=AMC b) chứng minh:AM vuông góc BC, tính MB c) trên tia AM lấy điểm D. Sao cho AM=MD, chứng minh :AB song song CD. Giúp mình với ạ,Cảm ơn!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
CHO TAM GIÁC ABC CÓ AB=AC.GỌI M LÀ TRUNG ĐIỂM CỦA BC
a) tam giác AMB=tam giác AMC
B)AM LÀ TIA PHÂN GIÁC CỦA GÓC BAC
C)TRÊN TIA ĐỐI CỦA MA LẤY ĐIỂM D SAO CHO MD=MA.CHỨNG MINH RẰNG;AB//CD
a) Xét hai tam giác $AMB$ và $AMC$ có:
$AM$ là cạnh chung;
$AB = AC$ (gt);
$BM = MC$ ($M$ là trung điểm $BC$);
Suy ra $\Delta AMB=\Delta AMC$ (c.c.c)
b) $\Delta AMB=\Delta AMC$ suy ra
$\widehat{BAM} = \widehat{CAM}$ (hai góc tương ứng)
Suy ra $AM$ là tia phân giác của góc $BAC$.
c) Xét hai tam giác $AMD$ và $DMC$ có:
$AM = AD$ (gt);
$\widehat{AMB} = \widehat{CMD}$ (hai góc đối đỉnh);
$BM = MC$.
Nên $\Delta AMD=\Delta DMC$ (c.g.c)
Suy ra $\widehat{BAM} = \widehat{CDM}$ (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên $AB$ // $CD$.
a) Xét ΔAMB và ΔDMC có:
\(AM=CM\) (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(BM=CM\) (M là trung điểm của BC)
\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)
b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow AB=DC\) (2 cạnh t.ứng)
c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
Cho tam giác ABC có AB=3 cm, AC=4cm,BC=5cm
a) Chứng minh tam giác ABC vuông
b) Gọi M là trung điểm của cạnh AC. tTrên tia đối của tia MB, lấy điểm D sao cho MB=MD. Chứng minh tam giác ABM = tam giác CDM, suy ra AC vuông góc với CD
c) Gọi N,K lần lượt là trung điểm của CD và BC, BN cắt AC tại H. CHứng minh K,H,D thẳng hàng
CẦN GẤP AI NHANH MIK TICK CHO!!!!
a,Có BC^2=5^2=25
AB^2+AC^2=3^2+4^2=25
suy ra BC^2=AB^2+AC^2
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A.
B) Xét \(\Delta ABM\)và \(\Delta CDM\) có:
\(\hept{\begin{cases}DM=BM\left(gt\right)\\AM=CM\left(gt\right)\\\widehat{BMA}=\widehat{CMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta ABM=\Delta CDM\left(c-g-c\right)}\)
\(\Rightarrow\widehat{ABM}=\widehat{MCD}\)mà \(\widehat{ABM}=90^0\left(cmt\right)\)
\(\Rightarrow\widehat{MCD}=90^0\)
\(\Rightarrow AC\perp CD\left(đpcm\right)\)