Cho tam giác MNP vuông tại M, đường cao MI. Biết \(\dfrac{MN}{MP}=\dfrac{3}{4}\); MI=\(\dfrac{48}{5}\) cm.Tính:
a) Độ dài các đoạn thẳng MN, MP, NP.
b) Diện tích tam giác MIP.
Cho tam giác MNP vuông tại M, đường cao MI . Biết MI = 16 , IN = 25 . Tính các đoạn thẳng IP, MN, MP , PN
Xét `\triangle MNP` vuông tại `M` có `MI` là đường cao
`@MN=\sqrt{MI^2+NI^2}=\sqrt{881}`.
`@NP=[MN^2]/[NI]=35,24`.
`@MP=\sqrt{NP^2-MN^2}=[16\sqrt{881}]/25`.
`@IP=\sqrt{MP^2-MI^2}=10,24`.
Cho tam giác MNP vuông tại M, đường cao MI(I thuộc NP). Cho PI=6cm, MP= 10 cm. a) Tính PN, MI, góc MNP b) Tính chu vì tam giác MNP c) Gọi H,K lần lượt là hình chiếu của I trên MN, MP. Tính IK
a: ΔPIM vuông tại I
=>IP^2+IM^2=MP^2
=>IM^2=10^2-6^2=64
=>IM=8(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên PI*PN=PM^2
=>PN=10^2/6=50/3(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên MI^2=IN*IP
=>IN=8^2/6=32/3(cm)
Xét ΔMNP vuông tại M có sin MNP=MP/PN
=10:50/3=3/5
=>góc MNP=37 độ
b: C=MN+NP+MP
=10+40/3+50/3
=10+90/3
=10+30
=40(cm)
c: Xét ΔIMP vuông tại I có IK là đường cao
nên IK*PM=IP*IM
=>IK*10=6*8=48
=>IK=4,8(cm)
Cho tg MNP vuông tại M. Đường cao MI, biết MN/MP=3/4, MI=48/5 cm. Tính:
a, Độ dài các đoạn thẳng MN, MP, NP
b, Diện tích tg MIP
Cho tam giác MNP vuông tại M, đường cao MH. Gọi E, F lần lượt là hình chiếu của H trên MN, MP.
a) Chứng minh: NH . PH = ME . MN
b) Chứng minh: \(\dfrac{NH}{PH}\)=\(\left(\dfrac{MN}{MP}\right)^2\)
c) Chứng minh: ∠MNF = ∠MPE
a: Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot PH=MH^2\left(1\right)\)
Xét ΔNHM vuông tại H có HE là đường cao
nên \(ME\cdot MN=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)
=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)
=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)
c: ΔMHP vuông tại H có HF là đường cao
nên \(MF\cdot MP=MH^2\)
mà \(ME\cdot MN=MH^2\)
nên \(MF\cdot MP=ME\cdot MN\)
=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)
Xét ΔMFN vuông tại M và ΔMEP vuông tại M có
\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)
Do đó: ΔMFN đồng dạng với ΔMEP
=>\(\widehat{MNF}=\widehat{MPE}\)
ta sử dụng hệ thức lượng trong tam giác vuông
\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)
mà MN=3MP/4
they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)
=> MP=\(4\sqrt{15}\)
bài 10: gống cái trên :
tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)
áp dungnj đl pita go ta có :
NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)
cho tam giác MNP vuông tại M . MN = 4cm, MP = 3cm. đường cao MI : a) Cm tam giác MNP và tam giác INM đồng dang => MN mũ 2 = NP . NI; b) tính độ dài NI và IP : c) gọi NE là tia phân giác của góc MNP . K là giao điểm NE và MI. cm EM/EP, NI/MN ; d) kẻ IH vuong góc với MN tại H. tính diện tích tam giác IMH
Cho tam giác MNP vuông tại M, đường cao MH, biết MH=12 và MN:MP=3:4.Tính MN, MP, NH, PH .
cho tam giác MNP cân tại M Vẽ mi vuông góc với NP tại I
Chứng minh MI là đường trung trực của N P
vẽ IE vuông góc với MN tại A, IB vuông góc với MP tại B chứng minh tam giác IAB cân
Giả sử góc MNP = 45° MN = 2 cm Tính NP
Giả sử góc MNP = 30 độ Chứng minh tam giác AIB đều
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.