Tìm a để hàm số xác định trên tập K chỉ ra:
y= \(\frac{2x+1}{x^2-6x+a-2}\); K= R
Tìm a để hàm số xác định trên tập K đã chỉ ra:
a) \(y=\frac{2x+1}{x^2-6x+a+2}\) ; K=R
b) \(y=\sqrt{x-a}+\sqrt{2x-a-1}\) ; K=(0;+vô cực)
p/s: giúp 1 câu cũng đc :((
a) Để K=R thì ta cần tìm A sao cho với mọi X\(\in R\)thì phân số đã cho xác định
ĐKXĐ : X2 - 6X + A + 2 \(\ne\)0
Ta có : X2 - 6X + A + 2 =0
\(\Delta\)=36 - 4A - 8
=28 - 4A
mà X2 - 6X + A + 2 \(\ne\)0 nên 28-4A <0
=> A > 7
Bài1. cho hàm số: y= k.x+3-2x+k
a) xác định k để hàm số đã cho là hàm số bậc nhất
b) xác định k để hàm số đồng biến trên R
Bài2. cho đường thẳng \(y=\left(2m-3\right)x-\dfrac{1}{2}\) (P) tìm m để đường thẳng D đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{2}{3}\right)\)
Bài 1:
a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)
b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0
hay k>2
Bài 2:
Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:
\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)
\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)
\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)
hay \(m=\dfrac{1}{3}\)
cho hàm số \(y=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a, tìm tập xác định của hàm số
b, chứng minh y<=3. chỉ rõ dấu bằng xảy ra khi nào
y= \(\dfrac{mx}{\sqrt{x-m+2}+1}\)
a, Tìm tập xác định của hàm số theo tham số m
b, Tìm m để hàm số có tập xác định trên (0;1)
Bài 1 : Cho hàm số y = 3(2mx - 1) + m + 2 (d)
a. Vẽ đồ thị hàm số với m = \(\dfrac{1}{2}\)
b. Tìm m để hàm số nghịch biến trên tập xác định.
c. Tìm m để (d) vuông góc với đường thẳng (△) : y = 6x + 1
d. Tìm điểm cố định luôn nằm trên đường thẳng (d).
e. Tìm khoảng cách lớn nhất từ gốc tọa độ O đên (d).
Bài 2 : Cho hàm số y = 3m - m - 1 (d)
a. Vẽ đồ thị hàm số với m = -1.
b. Tìm m để hàm số vuông góc với đường thẳng (△) : y = x + 1.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là 2.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
Bài 3 : Cho hàm số y = (4m - 3)x + m + 3
a. Vẽ đồ thị hàm số với m = 1.
b. Tìm m để hàm số nghịch biên trên tập xác đinh.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là -4.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)
\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)
hay \(m=-\dfrac{7}{36}\)
1.Tập xác định của hàm số y= ( x2-1)2/3 là
2.hệ số góc của tiếp tuyến tại A (1;0) của đồ thị hàm số y = -x3+3x -1
3.tìm tập xác định của hàm số y= log2021(x-1)
4.bất pt 2x-1<5 có tập nghiệm là
Mong mn chỉ giúp ♡
Cho hàm số y=(k^2-3k)x+1 a) xác định k để hàm số đồng biến trên R b) xác định k để hàm số nghịch biến trên R
a) Để hàm số đồng biến thì k(k-3)>0
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)
b) Để hàm số nghịch biến thì k(k-3)<0
hay 0<x<3
Cho hàm số \(y=h\left(x\right)=\frac{a-3}{2}x+a-5\). (a là số cho trước)
a. Tìm tập xác định và vẽ đồ thị hàm số khi a=1
b. Xác định a để h(1/4)=-3
c. Xác định a để đồ thị hàm số song song với trục hoành
d. Xác định a để đồ thị hàm số somg song với đường thẳng y=x-1
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6