Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
9.Trần Thùy Dương
Xem chi tiết
Hoàng Tử Hà
22 tháng 12 2020 lúc 22:18

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)

Cô Gái Yêu Sự Cô Đơn
Xem chi tiết
hienminh
Xem chi tiết
hienminh
24 tháng 9 2023 lúc 13:45

giúp mình với, mình cần gấp

Nguyễn Tuấn Minh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2021 lúc 14:23

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

toàn nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 21:56

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ=1/2AC

=>MN//PQ và MN=PQ

b: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

=>MNPQ là hình bình hành

Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 10:46

a: Xét ΔABC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

Xét ΔCDA có DP/DC=DQ/DA

nên PQ//CA và PQ=AC/2

=>MN//PQ và MN=PQ

b: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

=>MNPQ là hình bình hành

Trần Gia Tuệ
Xem chi tiết
An Phú 8C Lưu
1 tháng 12 2021 lúc 19:21

TK

a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

b, 

Nối M với C ; N với C

Có OM = 1313 OD

ON = 1313 OB

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét ΔΔ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét ΔΔ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét ΔΔ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

 

An Phú 8C Lưu
1 tháng 12 2021 lúc 19:22

hơi dài

Giang シ)
1 tháng 12 2021 lúc 19:22

Mình sẽ giải cho bạn câu a trước ( tự vẽ hình nha)

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

nhưng hơi dài chút

Nối M với C ; N với C

Có \(OM=\dfrac{1}{3}OD\)

ON=\(\dfrac{1}{3}OB\)

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét Δ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét Δ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét Δ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

Bùi Phương Linh
Xem chi tiết