Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Giao điểm AC và BD là E; F là hình chiếu của E trên AB, N là giao điểm cuae CF cới BD.
CMR: BD.NE = BN.ED
Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD vắt nhau tại E , F là hình chiếu vuông góc của E trên AB
a) Chứng minh tứ giác ADEF nội tiếp
b) Gọi N là giao điểm của CF và BD. Chứng minh BN.ED = BD.EN
Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD vắt nhau tại E , F là hình chiếu vuông góc của E trên ABa Chứng minh tứ giác ADEF nội tiếpb Gọi N là giao điểm của CF và BD. Chứng minh BN.ED BD.EN
Cho tứ giác ABCD nội tiếp nửa đường tròn tâm O đường kính AD = 2R(AB > CD) . Gọi E là giao điểm của hai đường chéo AC và BD, kẻ EF vuông góc với AD tại F. 3/ Gọi I là giao điểm của OC và BF. Chứng minh IB.IF=IO.IC 4/ Giả sử. góc BDA = 30 độ. Tính theo R thể tích của hình sinh ra khi cho tam giác ABD quay một vòng quanh cạnh AB.
giúp e voi mng ơii
3: Xét ΔIOD và ΔIBC có
góc ICB=góc IDO
góc OID=góc BIC
=>ΔIOD đồng dạng với ΔIBC
=>IO/IB=ID/IC
=>IO*IC=IB*ID
Cho tứ giác ABCD nội tiếp nửa đường tròn (O) đường kính AD, hai đường chéo AC và BD cắt nhau tại H. Gọi E là chân đường vuông góc kẻ từ H đến AD.
1. CH/m các tứ giác ABHE và DCHE nội tiếp.
2. C/m EH là đường phân giác góc BEC.
3. Gọi M là giao điểm của hai tia AB và DC chứng minh 3 điểm M,H,E thẳng hàng.
a) Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B∈(O))
AB là đường kính
Do đó: ΔADB vuông tại D(Định lí)
⇒\(\widehat{ADB}=90^0\)
hay \(\widehat{ADE}=90^0\)
Xét tứ giác ADEH có
\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối
\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của O tại BC cắt nhau tại M
a) CM tứ giác BKCM nội tiếp.
b) CM E,M,F thẳng hàng
a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn
=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK
Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK
Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn
=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD
Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC
Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)
=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).
Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC
Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)
=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn
=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)
Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC) (2)
Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)
Nên ^BAC + ^BDC + ^BMC = 1800 (3)
Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800
=> Tứ giác BKCM nội tiếp đường tròn (đpcm).
b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)
Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)
Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)
=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)
Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB
Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB
Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)
Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)
Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).
Bài 1: Cho tam giác ABC (AB < AC ) có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại D, E. Gọi H là giao điểm của BD và CE; F là giao điểm của AH và BC
a) CM: Tứ giác AEHD nội tiếp đường tròn
b) Gọi M là trung điểm của AH. CM: MD là tiếp tuyến của đg tròn (O)
c) Gọi K là giao điểm của AH và DE. CM: MD2 = MK.MF và K là trực tâm của tam giác MBC
d) CM: 2/FK = 1/FH + 1/FA
. Cho tam giác ABC nhọn (AB< AC ), đường tròn tâm O đường kính BC cắtAB tại E ,AC tại D . GọiH là giao điểm của BD và CE , S là giao điểm của đường thẳng BC và ED .
a) Chứng minh tứ giác ADHE nội tiếp và AH vuông góc với BC
. b) Gọi I là giao điểm của AH và BC . Chứng minh BIHE nội tiếp và góc EID = GOC EOD
c) Gọi K là giao điểm của AS với đường tròn ngoại tiếp tam giácADE . Chứng minh O H K thẳng hàng
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB= 2R. Trên cạnh BC lấy M ( M khác B và C), đường thẳng AM cắt (O ) ở D, E là giao điểm của BD và AC. Vẽ đường tròn (I ) ngoại tiếp tam giác MBD cắt đường kính AB ở N ( N khác B).
1. CMR: Tứ giác CEDM nội tiếp và 3 điểm E, M, N thẳng hàng 2,cho đoạn thẳng CN cắt đường tròn (i) ở F (giúp mình với ạ )
1: góc ECM+góc EDM=180 độ
=>ECMD nội tiếp
góc MNB=1/2*180=90 độ
EM vuông góc AB
MN vuông góc AB
=>E,M,N thẳng hàng
2: Đề bài yêu cầu gì?
Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp trong đường tròn đường kính BD. Gọi H, K lần lượt là hình chiếu vuông góc của điểm A trên các đường thẳng BC, BD và E là giao điểm của hai đường thẳng HK và AC. Biết đường thẳng AC đi qua điểm M(3;2) và nhận \(\overrightarrow{n}\) = (1;-1) làm vectơ pháp tuyến. Tìm tọa độ các điểm E và A, biết điểm H(1;3), K(2;2) và hoành độ điểm A lớn hơn 2.
Help me!!!
Thanks trc