Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
admin tvv
Xem chi tiết

a; Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)

nên CDHE là tứ giác nội tiếp đường tròn đường kính CH

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có

\(\hat{EHA}=\hat{DHB}\) (Hai góc đối đỉnh)

Do đó: ΔHEA~ΔHDB

=>\(\frac{HE}{HD}=\frac{HA}{HB}\)

=>\(HE\cdot HB=HD\cdot HA\)

c: Gọi O là trung điểm của AB

=>O là tâm đường tròn đường kính AB

ΔEAB vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOBE cân tại O

=>\(\hat{OEB}=\hat{OBE}\)

Gọi K là giao điểm của CH và AB

Xét ΔCAB có

AD,BE là các đường cao

AD cắt BE tại H

Do đó: H là trực tâm của ΔCAB

=>CH⊥AB tại K

Vì I là tâm đường tròn ngoại tiếp tứ giác CDHE

nên I là trung điểm của CH

=>IE=IH

=>ΔIEH cân tại I

=>\(\hat{IEH}=\hat{IHE}\)

=>\(\hat{IEH}=\hat{KHB}\)

\(\hat{IEH}+\hat{OEB}=\hat{IEO}\)

=>\(\hat{IEO}=\hat{KHB}+\hat{KBH}=90^0\)

=>EO⊥EI tại E

=>EI là tiếp tuyến của (O)

hay EI là tiếp tuyến của đường tròn đường kính AB

admin tvv
Xem chi tiết

a; Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)

nên CDHE là tứ giác nội tiếp đường tròn đường kính CH

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có

\(\hat{EHA}=\hat{DHB}\) (Hai góc đối đỉnh)

Do đó: ΔHEA~ΔHDB

=>\(\frac{HE}{HD}=\frac{HA}{HB}\)

=>\(HE\cdot HB=HD\cdot HA\)

c: Gọi O là trung điểm của AB

=>O là tâm đường tròn đường kính AB

ΔEAB vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOBE cân tại O

=>\(\hat{OEB}=\hat{OBE}\)

Gọi K là giao điểm của CH và AB

Xét ΔCAB có

AD,BE là các đường cao

AD cắt BE tại H

Do đó: H là trực tâm của ΔCAB

=>CH⊥AB tại K

Vì I là tâm đường tròn ngoại tiếp tứ giác CDHE

nên I là trung điểm của CH

=>IE=IH

=>ΔIEH cân tại I

=>\(\hat{IEH}=\hat{IHE}\)

=>\(\hat{IEH}=\hat{KHB}\)

\(\hat{IEH}+\hat{OEB}=\hat{IEO}\)

=>\(\hat{IEO}=\hat{KHB}+\hat{KBH}=90^0\)

=>EO⊥EI tại E

=>EI là tiếp tuyến của (O)

hay EI là tiếp tuyến của đường tròn đường kính AB

Dương Thị Chung
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:15

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:22

Các bài còn lại em tách ra nhé.

Nguyễn Huệ Lam
Xem chi tiết
21.Như Nguyễn
Xem chi tiết
Đức Hạnh
Xem chi tiết
Đức Hạnh
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Nguyễn Hà Linh
Xem chi tiết
vi lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2021 lúc 21:51

Xét tứ giác DHEC có 

\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối

\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)