Cho tam giác ABC có BC=5cm. Trên tia AB lấy điểm K và D sao cho AK=BD. Vẽ KI song song với BC; DE song song với BC (I,E thuộc AC)
a) Chứng minh AI=CE
b) Tính độ dài DE+KI
Cho tam giác ABC có BC=5cm. Trên tia AB lấy điểm K và D sao cho AK=BD. Vẽ KI song song với BC; DE song song với BC (I,E thuộc AC)
a) Chứng minh AI=CE
b) Tính độ dài DE+KI
Cho tam giác ABC có BC=5cm. Trên tia AB lấy điểm K và D sao cho AK=BD. Vẽ KI song song với BC; DE song song với BC (I,E thuộc AC)
a) Chứng minh AI=CE
b) Tính độ dài DE+KI
Cho tam giác ABC có BC=5cm. Trên tia AB lấy điểm K và D sao cho AK=BD. Vẽ KI song song với BC; DE song song với BC (I,E thuộc AC)
a) Chứng minh AI=CE
b) Tính độ dài DE+KI
Cho tam giác ABC vuông tại A có AB < AC Vẽ AH vuông góc với BC trên tia đối của ha lấy điểm D sao cho HD = ha Trên tia bc lấy điểm K sao cho HK = HB
a. Chứng minh Tam giác AHK=DHP
b.AK song song với BD
c.AB =BD
b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
AD vuông góc BK tại H
Do đó: ABDK là hình thoi
=>AK//BD
c: ABDK là hình thoi
=>AB=BD
Cho tam giác ABC có BC=5cm. Trên tia AB lấy điểm K và D sao cho AK=BD. Vẽ KI song song với BC; DE song song với BC (I,E\(\in\)AC)
a) Chứng minh AI=CE
b) Tính độ dài DE+KI
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!
cho tam giác ABC có AB < AC, trên cạnh BC lấy điểm E sao cho AE = AB. Tia phân giác của góc A cắt BC tại D. chứng minh tam giác ABD = tam giác AED. Tia AB cắt ED tại K và chứn minh AK = AC. Trên tia đối của tia AB lấy điểm F sao cho FA = AB và chứng minh rằng FE song song với AD
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD = AB.
a/ Cho biết AB = 6cm và BC = 10cm. Tính AC và so sánh góc B và góc C.
b/ Chứng minh tam giác CBD cân.
c/ Gọi M là trung điểm CD. Qua D vẽ đường thẳng song song BC cắt tia BM tại K. Chứng minh BC = DK và BC + BD > BK.
d/ AK cắt DM tại E. Chứng minh BC = 3DE
a, áp dụng định lí py-ta-go ta có:
BC2 =AB2+AC2
=> AC2=BC2−AB2
=> AC2=100−36
=> AC2=64 => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=>\(\widehat{A}\) > \(\widehat{B}\)>\(\widehat{C}\) (góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> ΔBCA=ΔDCA(cạnh huyền -cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>\(\Delta\)BCD cân tại C (đpcm)
Cho tam giác ABC nhọn có AB < AC. Vẽ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a) CM: BD = DE.
b) Đường thẳng DE và AB cắt nhau tại F. CM: tam giác DBF = DEC.
c) Qua C kẻ tia Cx song song với AB và cắt tia AD tại K. Gọi I là giao điểm của AK và CF. CM: I là trung điểm của AK.
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
k cho mk na
làm sai bài rồi "Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)" là cái j vậy?