b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
AD vuông góc BK tại H
Do đó: ABDK là hình thoi
=>AK//BD
c: ABDK là hình thoi
=>AB=BD
b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
AD vuông góc BK tại H
Do đó: ABDK là hình thoi
=>AK//BD
c: ABDK là hình thoi
=>AB=BD
Cho tam giác ABC vuông tại A (AC>AB). Vẽ đường cao AH . Trên tia đối của tia BC lấy điểm K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt AC tại P
a) Chứng minh: Tam giác ABC đồng dạng với tam giác KPC
b) Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của đoạn thẳng AK
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm D sao cho HD=HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh:AC=DC.
b) Chứng minh: tam giác ACE = tam giác DCE.
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC>2DK
cho tam giác abc vuông tại a đường cao ah. Tam giác ABC đồng dạng với tam giác HBA và suy ra AB2=BH.BC. Trên tia HC lấy điểm D sao cho HD=HA. Từ D vẽ đường thẳng song song với AH, cắt AC tại E. Chứng minh CE.CA=CD.CB. Chứng minh tam giác ABE cân
Cho tam giác ABC vuông tại A ( AB<AC), vẽ đường cao AH ( H thuộc BC). a) chứng minh tam giác ABC đồng dạng với tam giác HBA b) cho AB = 3cm ; AC = 4cm. tính BC, AH c) trên tia HC, lấy HD = HA. từ D vẽ đường thẳng song song với AH cắt AC tại E. chứng minh CE.CA=CD.CB d) chứng minh tam giác ABE cân
Cho tam giác ABC cân tại A với đường cao AH. Từ H vẽ HD vuông góc AB và HE vuông góc AC. Chứng minh AD=AE. Chứng minh AH là trung trực của ED. Lấy điểm F trên tia đối của tia HD sao cho HF=HD. Chứng minh CF vuông góc DH. Gọi K là giao điểm của EH và AB. Xác định trực tâm I của tam giác AHK. Chứng minh KI song song DE.
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH = HK. Từ K kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại I. BI cắt AK tại E
1) Chứng minh tam giác ABC đồng dạng với HBA
2) BK.EI = BE.KI
3) Gọi M là trug điểm của BI. Chứng minh:
a) HM là tia phân giác của góc AHK
b) tam giác AHM đồng dạng với tam giác AKI
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH=HK. Từ K kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại I. BI cắt AK tại E 1) Chứng minh tam giác ABC đồng dạng với HBA 2) BK.EI = BE.KI 3) Gọi M là trug điểm của BI. Chứng minh: a) HM là tia phân giác của góc AHK b) tam giác AHM đồng dạng với tam giác AKI
Cho tam giác ABC vuông tại A (AC > AB)đường cao AH ( H € BC ). Trên tia đối của tia bc lấy điểm K sao cho HK = HA qua K kẻ đường thẳng song song với AC cắt đường thẳng AC tại P a) Cm ∆ ABC ~ ∆ KPC b) Gọi Q là trung điểm của BP. Cm QA=QK và QH vuông góc AK c)Cm góc AKC = góc BPC d)Cm BP.HQ = BH.PC