Cho △ABC có \(\widehat{B}=60^o\). 2 tia phân giác AD; CE của \(\widehat{A}\) và \(\widehat{C}\) cắt nhau tại I. C/m ID = IE.
Tam giác ABC có \(\widehat{B}=60^o\). Hai tia phân giác AD và CE của \(\widehat{ABC}\) và \(\widehat{ACB}\) cắt nhau ở I. CMR : ID = IE
Lời giải:
Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$
Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$
Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$
\(\Leftrightarrow IK=IL\)
Lại có:
\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)
\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)
\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)
\(=180^0-\frac{3}{2}(180^0-60^0)=0\)
\(\Rightarrow \angle IEK=\angle IDL\)
Xét tam giác $IEK$ và tam giác $IDL$ có:
\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)
\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)
Cho tam giác ABC có \(\widehat{B}\) = 60o . Tia phân giác của góc BAC cắt BC ở D, tia phân giác của góc ACB cắt AB ở E. AD và CE cắt nhau ở O. CMR OE = OD.
đề bài chưa cho số ddo của đoạn thẳng thì làm sao mà tính được hử bạn?
đề bài sai là cái chắc!!!!!!!!!!!!!!!
Câu hỏi của Huỳnh Thúy Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cho tam giác ABC có \(\widehat{B}+\widehat{C}=60^0\).Phân giác AD.Trên AD lấy điểm O, trên tia đối của AC lấy M sao cho \(\widehat{ABM}=\widehat{ABO}\).trên tia đối của AB lấy N sao cho \(\widehat{ACN}=\widehat{ÁCO}\).chứng minh:
a) AM = AN
b) tam giác MON là tam giác đều
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
bạn kham khảo tại link dưới đây nhé.
câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
cho tứ giác ABCD có \(\widehat{A}=60^o,\widehat{B}=75^o,\widehat{D}=90^o\) , AB=AD. Gọi G là giao điểm của BC và AD, E là giao điểm của tia phân giác \(\widehat{A}\) với BC
CMR: BC=EG
Cho tam giác ABC có \(\widehat{A}\)= 60o; \(\widehat{B}\)= 80o và có phân giác AD
a) So sánh các cạnh của tam giác ADC
b) So sánh các cạnh của tam giác ADB
thôi nha mik tự làm đc r
Cho tam giác ABC có \(\widehat{A}=180^o-3\times\widehat{C}\); \(\widehat{B}=70^o\)
Vẽ tia phân giác \(\widehat{B}\) cắt AC tại E. Qua E kẻ đường thẳng song song BC cắt AB tại D.CMR: ED là tia phân giác của \(\widehat{AED}\)
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
Cho tam giác ABC có \(\widehat{BAC}=60^o\) . Kẻ BC, CN lần lượt là tia phân giác của \(\widehat{ABC},\widehat{ACB}\), BM và CN cắt nhau tại I
a) Tính \(\widehat{BIN}\)
b) CM tam giác IMN cân
Cho tam giác ABC nhọn, \(\widehat{ABC}=60^o\)với hai đường cao AD, BE cắt nhau tại H. Tia CH cắt AB tại F. Gọi M là trung điểm của AC.
a,HF.HC=AH.DH
DB.DC=DH.AD
b, \(\widehat{AFE}=\widehat{ACB}\); EB là tia phân giác của \(\widehat{DEF}\)
Giải giúp mình với
cho \(\widehat{xOm}\) = 30\(^o\). vẽ tia 0y là tia đối của Ox
a,tính \(\widehat{yOm}\) ?
b, gọi Ot là tia phân giác \(\widehat{xOy}\). cmr \(\widehat{yOt}\) là góc vuông
c, vẽ tia On nằm giữa Ot vafg Oy sao cho \(\widehat{tOn}\) = 60\(^o\). tia Ot có là tia phân giác của \(\widehat{mOn}\) không ? vì sao
a) Ta có: \(\widehat{xOm}+\widehat{yOm}=180^0\)(Hai góc kề bù)
\(\Leftrightarrow\widehat{yOm}+30^0=180^0\)
hay \(\widehat{yOm}=150^0\)
Vậy: \(\widehat{yOm}=150^0\)
b) Ta có: tia Ot là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{yOt}=\widehat{xOt}=\dfrac{\widehat{xOy}}{2}=\dfrac{180^0}{2}\)
hay \(\widehat{yOt}=90^0\)(đpcm)
Cho tam giác ABC có\(\widehat{A}=80^0\) , AD là tia phân giác của góc A và \(\frac{AB}{DC}=\frac{BC}{AB+AC}\) . Cmr \(\widehat{B}=60^0\)