Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Khôi Nguyên
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 3 2020 lúc 19:26

solution:

Khách vãng lai đã xóa
Tiểu Bạch Kiểm
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:55

a) Xét tứ giác AKHF có 

\(\widehat{AKH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AKH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Akai Haruma
16 tháng 4 2021 lúc 0:31

Câu a thì như bạn Thịnh giải. Câu b bạn xem lại đề. $AF$ vốn dĩ cắt $(O)$ tại $A,F$ rồi thì làm sao cắt $(O)$ tại $J$ nữa?

Cố Tử Thần
Xem chi tiết
Lê Bảo Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 23:13

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 23:16

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

Thanh Vinh Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:32

a: Xét ΔEBH vuông tại E và ΔFBH vuông tại F có

BH chung

góc EBH=góc FBH

Do đó: ΔEBH=ΔFBH

=>HF=HE

b: HF=HE

mà HE<HC

nên HF<HC

Nguyễn Trọng Hữu
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 18:28

loading...  loading...  loading...  

Dứa🍑 Dzai
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 14:11

Xét tứ giác ABEI có 

\(\widehat{AEB}=\widehat{AIB}\left(=90^0\right)\)

Do đó: ABEI là tứ giác nội tiếp

hay A,B,E,I cùng thuộc 1 đường tròn

Phú Phan Đào Ngọc
Xem chi tiết
Linh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 10:26

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

THN
Xem chi tiết
Yim Yim
30 tháng 5 2018 lúc 20:04

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

Trần Đăng Thái
15 tháng 4 2020 lúc 13:42

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

Khách vãng lai đã xóa
VuongTung10x
15 tháng 4 2020 lúc 13:42

Lời giải:

a)

HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900

Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)

b)

Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^

Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)

⇒AMNˆ=ACBˆ⇒AMN^=ACB^

Xét tam giác AMNAMN và ACBACB có:

{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)

⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)

c)

Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)

ACBˆ=AMNˆACB^=AMN^ (cmt)

⇒AEBˆ=AMNˆ⇒AEB^=AMN^

⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^

⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp

⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)

⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.

Chúc bạn học tốt

Khách vãng lai đã xóa