Cho tam giác ABC nhọn có đường cao AE ; BD cắt nhau tại H biết rằng AH = BC . Tính số đo góc BAC
cho tam giác ABC có các góc nhọn kẻ BE, CF là 2 đường cao. Kẻ EM, FN là 2 đường cao tam giác AEF. a)CM: AM/AF=AE/AC b)MN // BC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Ba đường cao AE,BF CK cắt nhau tại H. Tia AE,AF cắt đường tròn tâm O lần lượt tại I và J
a) CM:tứ giác AKHF nội tiếp
b) CM:hai cung CI và CJ bằng nhau
c) CM:tam giác AFK~ ABC
a) Xét tứ giác AKHF có
\(\widehat{AKH}\) và \(\widehat{AFH}\) là hai góc đối
\(\widehat{AKH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Câu a thì như bạn Thịnh giải. Câu b bạn xem lại đề. $AF$ vốn dĩ cắt $(O)$ tại $A,F$ rồi thì làm sao cắt $(O)$ tại $J$ nữa?
Cho tam giác ABC nhọn có các đường cao AE, BK,CI cắt nhau tại H
a, Chứng minh rằng tứ giác EHKC, BIKC nội tiếp đường tròn
b, Chứng minh AE, BK,CI là tia phân giác của tam giác IEK
c, So sánh bán kính đường tròn ngoại tiếp tam giác ABH và tam giác BHC
Bài 10: Cho ABC nhọn có các đường cao AE, CD cắt nhau tại H (E BC, D AB).
a) Chứng minh: ABE ∽ CBD b) Chứng minh: HD . HC = HA.HE c) Nếu BD = 3cm, DC = 4cm. Tính tỉ số AH
DH
Bài 11: Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Cm: ABE và ACF đồng dạng. b) Cm: HE.HB = HC.HF c) Cm: góc AEF bằng góc ABC. d) Cm: EB là tia phân giác của góc DEF.
Bài 10:
a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔABE\(\sim\)ΔCBD(g-g)
b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có
\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)
Do đó: ΔHDA\(\sim\)ΔHEC(g-g)
Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)
hay \(HD\cdot HC=HE\cdot HA\)
Bài 11:
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
hay \(HE\cdot HB=HF\cdot HC\)
c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
cho tam giác ABC nhọn có AB < AC và đường cao AE . Tia phân giác của góc B cắt AE ở H . Kẻ HF vuông góc với AB ở F
a, So sánh HF và HE
b, Chứng minh : HF < HC
a: Xét ΔEBH vuông tại E và ΔFBH vuông tại F có
BH chung
góc EBH=góc FBH
Do đó: ΔEBH=ΔFBH
=>HF=HE
b: HF=HE
mà HE<HC
nên HF<HC
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac ABE đồng dạng tam giác ACF
b) Chứng minh EC.HF=BF.HE
c) Chứng minh góc HEF = góc HCB
d) biết AE=9cm, AB=12cm. tính s tam giác ABC phần
tam giác AEF
Cho tam giác ABC nhọn có các đường cao AE và BI(E thuộc BC I thuộc AC c/minh 4 điểmABEI thuộc 1 đường tròn và so sánh IE với AB
Xét tứ giác ABEI có
\(\widehat{AEB}=\widehat{AIB}\left(=90^0\right)\)
Do đó: ABEI là tứ giác nội tiếp
hay A,B,E,I cùng thuộc 1 đường tròn
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Cho AE=3 cm, AB=6 cm
Chứng minh: Diện tích tam giác ABC= 4*Diện tích tam giác AEF
Cho tam giác ABC nhọn, đường cao AH (H thuộc BC ), kẻ HI vuông góc AB tại I, trên tia đối của tia IH lấy điểm E sao cho EI bằng HI a, chứng minh AE=AH Cho tam giác ABC nhọn , đường cao AH (H thuộc BC ), kẻ HI vuông góc AB tại I , trên tia đối của tia IH lấy điểm E sao cho EI bằng HI
a, chứng minh AE=AH
b, kẻ HK vuông góc AC tại K , trên tia đối của tia KH lấy điểm F sao cho FK=HK . chứng minh tam giác AEFcân
c, chứng minh HA là phân giác góc MHN
d, chứng minh AH,BN, CM đồng quy
a: Xét ΔAEH có
AB vừa là đường cao, vừa là trung tuyến
=>ΔAEH cân tại A
=>AE=AH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AH=AF=AE
Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O và AB< AC. Kẻ đường cao AD của tam giác ABC và đường kính AE của đường tròn tâm O. Gọi F là chân đường vuông góc kẻ từ B xuống đường kính AE. CMR:
a) Tứ giác ABDF là tứ giác nội tiếp
b) DF vuông góc với AC.
\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)
Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp
b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)
\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )
\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)
\(\Rightarrow DF\perp CA\)
dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD
Lời giải:
a)
HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900
Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)
b)
Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^
Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)
⇒AMNˆ=ACBˆ⇒AMN^=ACB^
Xét tam giác AMNAMN và ACBACB có:
{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)
⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)
c)
Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)
ACBˆ=AMNˆACB^=AMN^ (cmt)
⇒AEBˆ=AMNˆ⇒AEB^=AMN^
⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^
⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp
⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)
⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.
Chúc bạn học tốt