Cho ΔABC có AB= \(a\sqrt{5}\) ; BC= \(a\sqrt{3}\) ; AC= \(a\sqrt{2}\).
a) CM: ΔABC vuông tại C
b) Tính các tỉ số lượng giác của góc B, từ đó suy ra tỉ số lượng giác của góc A.
Mong mn giúp mik
Cho ΔABC vuông tại A có AB=5;AC=4.Bán kính đường tròn qua A và tiếp xúc với BC tại B bằng
A.\(\dfrac{5}{4}\sqrt{41}\) B.\(\dfrac{5}{2}\sqrt{41}\) C.\(\sqrt{41}\) D.\(\dfrac{5}{8}\sqrt{41}\)
Cho ΔABC vuông tại A có góc C =60 , AB=\(\sqrt{192}\)cm.
Diện tích của ΔABC là \(\sqrt{a}cm^2\) . Vậy a =
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
Cho ΔABC vuông tại A có góc C = 60 độ , AB= \(\sqrt{192}\)cm.
Diện tích của ΔABC là \(\sqrt{a}\).cm Vậy a =
Cho hình chóp S.ABC có SA vuông góc (ABC), đáy là ΔABC vuông tại B, AB=a, \(BC=a\sqrt{3}\), \(SA=\dfrac{a\sqrt{6}}{2}\). Tính góc((SAC);(SBC))
Trong mp (SAC), từ A kẻ \(AD\perp SC\) (D thuộc SC) (1)
Trong mp (ABC), qua A kẻ đường thẳng vuông góc AC cắt BC kéo dài tại E
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp AE\\AE\perp AC\end{matrix}\right.\) \(\Rightarrow AE\perp\left(SAC\right)\Rightarrow\left\{{}\begin{matrix}AE\perp AE\\AE\perp SC\left(2\right)\end{matrix}\right.\)
(1);(2) \(\Rightarrow SC\perp\left(ADE\right)\)
Mà \(SC=\left(SAC\right)\cap\left(SBC\right)\Rightarrow\widehat{ADE}\) là góc giữa (SAC) và (SBC)
\(AC=\sqrt{AB^2+BC^2}=2a\)
Hệ thức lượng: \(\dfrac{1}{AD^2}=\dfrac{1}{SA^2}+\dfrac{1}{AC^2}\Rightarrow AD=\dfrac{2a\sqrt{33}}{11}\)
\(\dfrac{1}{AB^2}=\dfrac{1}{AC^2}+\dfrac{1}{AE^2}\Rightarrow AE=\dfrac{AB.AC}{\sqrt{AC^2-AB^2}}=\dfrac{2a\sqrt{3}}{3}\)
\(\Rightarrow tan\widehat{ADE}=\dfrac{AE}{AD}=...\)
Cho ΔABC vuông tại A có góc C = 60 độ , AB= căn 192 cm.
Diện tích của ΔABC là \(\sqrt{a}\)cm2 . Vậy a =?
Kẻ AH vuông góc với BC
Có: A + B + C = 1800 => B = 180 - (A + C) = 180- (90 - 60) = 300
Trong tam giác AHB có: AH là đường cao và góc ABH = 300
=> tam giác AHB là 1/2 tam giác đều
=> BH = \(\frac{AB\sqrt{3}}{2}=\frac{\sqrt{192}.\sqrt{3}}{2}=12cm\)
và AH = 1/2.AB = 1/2.\(\sqrt{192}\) = \(4\sqrt{3}cm\)
Có: AH2 = HB.HC => HC = \(\frac{AH^2}{HB}=\frac{\left(4\sqrt{3}\right)^2}{12}=4cm\)
=> BC = HB + HC = 12 + 4 = 16cm
Diên tích của tam giác ABC: \(S_{ABC}=\frac{AH.BC}{2}=\frac{4\sqrt{3}.16}{2}=32\sqrt{3}cm^2=\sqrt{a}\Rightarrow a=\left(32\sqrt{3}\right)^2=3072\)
Vậy a = 3072
Cho ΔABC cân tại A,I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.\(5\sqrt{3}\) B.\(\dfrac{3\sqrt{17}}{2}\) C.\(3\sqrt{19}\) D.3\(\sqrt{10}\)
Cho ΔABC có AB = 4cm, AC= 6cm, BC= \(2\sqrt{13}\) cm.
Chứng minh : AB.sinB = AC. SinC
Ta có:
\(AB^2=4^2=16\)
\(AC^2=6^2=36\)
\(BC^2=\left(2\sqrt{13}\right)^2=52\)
\(\Rightarrow AB^2+AC^2=BC^2\left(=52\right)\)
\(\Rightarrow\Delta ABC\) vuông tại A (theo định lý Pytago đảo)
\(\Rightarrow sinB=\dfrac{AC}{BC}\)
\(sinC=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{sinB}{sinC}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)
\(\Rightarrow AB.sinB=AC.sinC\)
cho ΔABC có AB=c, BC=a, CA=b. diện tích ΔABC là 5 cm2. tìm GTNN của biểu thức a2+2b2+3c2
Cho ΔABC cân tại A.I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.5\(5\sqrt{3}\) B.\(3\sqrt{19}\) C.\(3\sqrt{10}\) D.\(\dfrac{3\sqrt{17}}{2}\)