CHo HBH ABCD . các điểm M , N theo thứ tự thuộc các cạnh AB ; BC sao cho AN = CM . GỌi K là giao điểm AN và CM . CMR KD là tia p/s góc AKC
cho điểm O nằm trong tứ giác ABCD . E,F,G,H theo thứ tự là trung điểm của AB,BC,CD,DA . Gọi M,N,P,Q theo thứ tự là các điểm đối xứng với O qua E,F,G,H
CM : MNPQ là hbh và có các cạnh = đường chéo của tứ giác ABCD
Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.
Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).
Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.
Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).
Khi đó ta có:
\(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)
Vậy ta đã chứng minh xong bài toán.
Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC
Cho hình bình hành ABCD, trên các cạnh AB, BC, CD, DA theo thứ tự lấy các điển M,N,P,Q sao cho AM=CP,BN=DQ.
a) CM:AMCP là hbh
b)Gọi O là giao điểm 2 đg chéo AC và BD, CM o là trung điểm MP
c)CM:MNPQ là hbh
d)CM: AC,BD,MP,NQ đồng quy tại 1 điểm
Bài 1: Cho hcn ABCD , Gọi H là chân đường cao vuông góc từ A xuống BD,biết HB=9cm,HD=3cm.Tính độ dài các cạnh AB,AD
Bài 2: CMR các tia phân giác của các góc của 1 hbh cắt nhau tạo thành 1 hcn ( 2 cạnh kề hbh không bằng nhau)
Bài 3: Cho tứ giác ABCD có AB vuông góc với CD.Gọi M,N,P,Q lần lượt theo thứu tự là trung điểm của BC,BD,AD,AC.CMR: MP=NQ
Bài 3: Cho tg ABC vuông cân tại A,AB=6cm.điểm M thuộc cạnh BC.Gọi, D,E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB,AC
a) Tứ giác ABCD là hình gì? tính chu vi của tứ giác đó
b) Tìm vị trí của điểm M trên BC để đoạn DE có dộ dài nhỏ nhất?
giải,vẽ hình ra dùm mk,mk cảm ơn nhiều ạ
câu a của bài 3 là tứ giác ADME nhé mn
Cho hbh ABCD. Các điểm M,N thuộc các cạnh AB,BC sao cho AN=CM. Gọi K là gđ của AM,CN.
a) CMR: S tam giác AND=1/2 S hbh ABCD
b)CMR: KD là tia phân giác của AKC
Kẻ DI,DJ lần lượt vuông góc với AK,CK
\(a,S_{AND}=\dfrac{1}{2}AN\cdot DI=\dfrac{1}{2}S_{ABCD}\) (chung đáy AD, cùng chiều cao hạ từ N)
\(b,S_{CDM}=\dfrac{1}{2}CM\cdot DJ=\dfrac{1}{2}S_{ABCD}\) (chung đáy CD, cùng chiều cao hạ từ M)
\(\Rightarrow\dfrac{1}{2}AN\cdot DI=\dfrac{1}{2}CM\cdot DJ\Rightarrow DI=DJ\left(AN=CM\right)\\ \Rightarrow\Delta DIK=\Delta DJG\left(ch-cgv\right)\\ \Rightarrow\widehat{IKD}=\widehat{JKD}\)
Vậy KD là phân giác \(\widehat{AKC}\)
Cho hbh ABCD. Các điểm M,N thuộc các cạnh AB,BC sao cho AN=CM. Gọi K là gđ của AM,CN.
a) CMR: S tam giác AND=1/2 S hbh ABCD
b)CMR: KD là tia phân giác của AKC
Cho hbh ABCD. Các điểm M,N thuộc các cạnh AB,BC sao cho AN=CM. Gọi K là gđ của AM,CN.
a) CMR: S tam giác AND=1/2 S hbh ABCD
b)CMR: KD là tia phân giác của AKC
cho hình bình hành ABCD , các điểm M, N theo thứ tự thuộc các cạnh AB, BC sao cho AN=CM , gọi K là giao điểm của AN và CM . chúng minh rằng KD là tia phân giác cảu góc AKD
cho hình vuông abcd có cạnh ab=8cm. M,N,P,Q theo thứ tự là trung điểm các cạnh ab,bc,cd,da. T,K,R,S theo thứ tự là trung điểm các cạnh mn,np,pq,qm. Hãy tính diện tích tứ giác tkrs
Cho HBH ABCD. Gọi E,F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE
CMR: a) Tứ giác EMFN là HBH
b) Các đường thẳng AC, EF,MN đồng quy
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
Suy ra: BF//DE
hay EM//FN
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
hay MF//EN
Xét tứ giác EMFN có
EM//FN
EN//MF
Do đó: EMFN là hình bình hành
b: Ta có: AECF là hình bình hành
nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có: EMFN là hình bình hành
nên Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,EF,MN đồng quy