Cho hbh ABCD. Các điểm M,N thuộc các cạnh AB,BC sao cho AN=CM. Gọi K là gđ của AM,CN.
a) CMR: S tam giác AND=1/2 S hbh ABCD
b)CMR: KD là tia phân giác của AKC
Cho hbh ABCD. Các điểm M,N thuộc các cạnh AB,BC sao cho AN=CM. Gọi K là gđ của AM,CN.
a) CMR: S tam giác AND=1/2 S hbh ABCD
b)CMR: KD là tia phân giác của AKC
Cho hình bình hành ABCD. Trên cạnh AB và BC lần lượt lấy hai điểm M và N sao cho AN=CM. Gọi K là giao điểm của AN và CM. CMR: KD là tia phân giác của góc AKC
Cho hình bình hành ABCD. Trên cạnh AB và BC lần lượt lấy hai điểm M và N sao cho AN=CM. Gọi K là giao điểm của AN và CM. CMR: KD là tia phân giác \(\widehat{AKC}\)
Cho hình bình hành ABCD , trên cạnh AB lấy điểm M , trên cạnh BC lấy điểm N sao cho AN = CM. Gọi giao điểm của AN và CM là K . Chứng minh KD là tia phân giác của góc AKC.
cho hình bình hành ABCD.Các điểm M,N theo theo thứ tự thuộc các cạnh AB,BC sao cho AN=CM .Gọi K là giao điểm của AN và CM.CMR KD là tia phân giác của \(\widehat{AKC}\)
cho hình bình hành ABCD , các điểm M, N theo thứ tự thuộc các cạnh AB, BC sao cho AN=CM , gọi K là giao điểm của AN và CM . chúng minh rằng KD là tia phân giác cảu góc AKD
cho hbh ABCD có AB=8cm, AD=4cm.Gọi M,N lần lượt là trung điểm của AB và CD
a, cmr : tứ giác AMCN là hbh
b, tứ giác AMND là hình gì ? Vì sao?
c, gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM. Tứ giác MINK là hình gì? cmr: TK//CD