Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Cho hình bình hành ABCD , trên cnh AB ly đim M , trên cnh BC ly đim N sao cho AN = CM. Gi giao đim ca AN CM K . Chng minh KD là tia phân giác ca góc AKC.

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 8:50

Trước hết ta chứng minh bổ đề sau (nếu em chưa học)

Cho 4 điểm A; B; C; D phân biệt sao cho \(AB||CD\), khi đó ta luôn có: \(S_{\Delta ACD}=S_{\Delta BCD}\)

C/m: từ A và B lần lượt kẻ \(AH\) và \(BK\) vuông góc CD \(\Rightarrow AH||BK\Rightarrow\) tứ giác AHKB là hình chữ nhật

\(\Rightarrow AH=BK\)

Do \(\left\{{}\begin{matrix}S_{\Delta ACD}=\dfrac{1}{2}AH.CD\\S_{\Delta BCD}=\dfrac{1}{2}BK.CD\end{matrix}\right.\) mà \(AH=BK\Rightarrow S_{\Delta ACD}=S_{\Delta BCD}\) (đpcm)

Quay lại bài toán, áp dụng bổ đề trên ta có: do N thuộc BC nên \(NC||AD\Rightarrow S_{\Delta NAD}=S_{\Delta CAD}\)  (1)

Tương tự, \(AM||CD\Rightarrow S_{\Delta ACD}=S_{\Delta MCD}\) (2)

(1);(2) \(\Rightarrow S_{\Delta NAD}=S_{\Delta MCD}\)

Từ D lần lượt kẻ \(DE\perp AN\) và \(DF\perp CM\)

\(\Rightarrow\left\{{}\begin{matrix}S_{\Delta NAD}=\dfrac{1}{2}DE.AN\\S_{\Delta MCD}=\dfrac{1}{2}DF.CM\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}S_{\Delta NAD}=S_{\Delta MCD}\\AN=CM\end{matrix}\right.\) \(\Rightarrow DE=DF\)

\(\Rightarrow\Delta_VDEK=\Delta_VDFK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{EKD}=\widehat{FKD}\) hay KD là phân giác

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 8:49

loading...


Các câu hỏi tương tự
Ngô Phương Quý
Xem chi tiết
pham trung thanh
Xem chi tiết
Chirikatoji
Xem chi tiết
Thắng Trịnh
Xem chi tiết
Nguyễn Xuân Thành
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Mon an
Xem chi tiết
le van nam
Xem chi tiết
Nguyenthihuemai
Xem chi tiết