Cho tam giác ABC vuông tại A, trung tuyến AM. Biết AM = 15cm; AB = 10cm. vậy diện tích tam giác ABC là .... dm2
Cho tam giác ABC vuông tại A. Đường trung tuyến AM, vẽ BH vuông góc AM, biết AB 15cm, BH 12cm. Tính BC cm
Cho tam giác ABC vuông tại A. Đường trung tuyến AM, vẽ BH vuông góc AM, biết AB=15cm, BH=12cm. Tính BC=? cm
Xét t.giác ABH vg tại H có:
AB2= BH2 + AH2 (đlí Pytago)
TS: 225= 144+ AH2
=> AH= 9(cm)
Đặt HM= x
ta có : AM2= (x+9)2
AM2 = BM2= 122 +x2
=> (x+9)2= 122 + x2
= x2 + 18x+81= 144+x2
= x2 +18x+81-144+x2=0
18x+81= 144
18x= 163
=>x=3,5
=> HM= 3,5(cm)
ta có AM= AH+HM
t/s: AM= 9+3,5
AM= 12,5
ta có BC= 2AM(t/c)
=> BC= 25
Cho tam giác ABC vuông tại A, đường cao AH=12cm và đường trung tuyến AM=15cm. Tính diện tích tam giác ABC.
Trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền =nửa ch
=> AM=BM=MC=15cm =>BC=30cm
lại có AH là đường cao va=12cm
=> S tam giác ABC là :(30x12):2=180cm^2
Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=12\left(cm\right)\)
Do AM là trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{25}{2}=12,5\left(cm\right)\)
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=225+400=625\Rightarrow BC=25\)cm
Xét tam giác ABC, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12\)cm
Vì AM là đường trung tuyến suy ra : \(AM=\dfrac{BC}{2}=\dfrac{25}{2}\)cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20=300\)
hay AH=12(cm)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}=\dfrac{25}{2}=12.5\left(cm\right)\)
Cho tam giác ABC vuông tại A trung tuyến AM và tia pg AD
a)Tinha AM biết AB=15cm , BC=39cm
b)kẻ đường cao AH , trên HC lấy K sao cho HK = HB . c/m tam giác AKB đều biết B=60 độ
c) c/m AD>HB
Cho tam giác ABC vuông tại A, trung tuyến AM, G là trọng tâm của tam giác ABC. Tính AM biết BC=30cm
cho tam giác abc vuông tại A trung tuyến AM biết AB=3cm AC=5cm tính AM
Đầu bài sai r nếu cho vầy tính BC ra căn cơ ???
nên sửa Cho BC = 5
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Cho tam giác ABC vuông tại A, các đường trung tuyến AM và BN cắt nhau tại trọng tâm G , biết AB=15cm,AC=20cm
a)tính AG
b)trên HC lấy E sao cho HE=HB c/m tam giác AEB cân tại A
c)So sánh GA+GB và AE
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB = 3cm, AC = 4cm. Độ dài AM = ? *
△ABC vuông tại A có \(BC^2=AB^2+AC^2\) (định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△ABC vuông tại A có AM là đường trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)