Bài 2 Cho đường tròn (0;25cm) và đường tròn (O; 15cm) . Một đường thẳng cắt hai đường tròn lần lượt tại A, B, C, D sao cho AB = BC = CD Tính độ dài AB.
Bài 4. (3,5 điểm) Cho điểm M nằm ngoài đường tròn (0;R) sao cho OM = 2R. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (0) (A, B là các tiếp điểm). Kẻ đường kính AC của đường tròn (0). Gọi H là giao điểm của AB và OM. 1) Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. 2) Tính tỷ số OH/OM. 3) Gọi E là giao điểm của CM và đường tròn (0). Chứng minh HE vuông góc BE.
Bài 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (0), đường cao AD, D eBC. Vẽ đường kính AKcủa đừng tròn (O). Chứng minh : 1/ AB.CK = BD.AK 2/ AB. CK + AC.BK BC.AK
Bài 4: ( 3,5 điểm ) Cho nửa đường tròn (0) đường kính AB. Trên nửa đường tròn lấy 2 điểm C và D(D thuộc cung AC ) sao cho COD=90'. Các tia AD và BC cất nhau ở P, AC và BD cắt nhau ở H. a) Chứng minh tứ giác PDHC nội tiếp được trong đường tròn. b) Chứng minh APB = 45°. c) Gọi K là giao của PH với AB. Chứng minh PH.PK = PC.PB d) Chúng minh PH.PK = PO² -OB'
(Bài này làm như thế nào vậy mn???)
Đường thẳng d: \(x.cos\alpha+y.sin\alpha+2.sin\alpha-3.cos\alpha+4=0\) (với \(\alpha\) là tham số) luôn tiếp xúc với đường tròn nào trong các đường tròn sau đây:
A. Đường tròn tâm I(3;-2), R=4
B. Đường tròn tâm I(-3;-2), R=4
C. Đường tròn tâm I(0;0), R=1
D. Đường tròn tâm I(-3;2), R=4
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Bài 1: Cho đường tròn (O;3) và điểm M,N sao cho OM=2 căn 2 và ON=3. Xác định vị trí của điểm M và N với (O).
Bài 2:Cho đường tròn (O) và a nằm trên đường tròn. vẽ góc xAy=90độ và Ax, Ay cắt đường tròn tại B và C, biết AB=6, AC=8. tính bán kính đường tròn (O)
Bài 1:
Điểm M nằm trong (O)
Điểm N nằm trên (O)
Bài 1: Trong mặt phẳng với hệ toạ độ Đềcác vuông góc Oxy, cho đường thẳng (∆): 2x+y+3=0 và hai điểm A(-5;1), B(-2;4) 1. Viết phương trình đường tròn C đi qua A,B và có tâm I∈ (∆). 2. Viết phương trình đường tiếp tuyến tại A với đường tròn C. 3. Viết phương trình các tiếp tuyến với (C), biết tiếp tuyến đi qua D(1;2). Tìm toạ độ tiếp điểm. Bài 2: Trong mặt phẳng với hệ toạ độ Oxy cho điểm I(-2;1) và đường thẳng d: 3x-4y=0 a. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. b. Viết phương trình tập hợp các điểm mà qua các điểm đó vẽ được hai tiếp tuyến đến (C) sao cho hai tiếp tuyến vuông góc với nhau.
Bài 2:
a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
Phương trình (C) là:
(x+2)^2+(y-1)^2=2^2=4
Bài 1:
a: I thuộc Δ nên I(x;-2x-3)
IA=IB
=>IA^2=IB^2
=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)
=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49
=>26x+41=32x+53
=>-6x=-12
=>x=2
=>I(2;-7): R=IA=căn 113
Phương trình (C) là:
(x-2)^2+(y+7)^2=113
2: vecto IA=(7;-8)
Phương trình tiếp tuyến là:
7(x+5)+(-8)(y-1)=0
=>7x+35-8y+8=0
=>7x-8y+43=0
Bài tập :
B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0
B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)
Bài này chuẩn bị tui thi vào lớp 10 á :((
Cho đường tròn (O) đường kính AB. Ax, By là 2 tia tiếp tuyến của (O) ( Ax, By cùng nửa mặt phẳng bờ là đường thẳng AB ) . Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho góc COD = 900 . CMR : CD tiếp xúc với đường tròn (O)
Tui biết vẽ hình rồi nhá cho lời giải nha :)))
Gọi H là chân đường vuông góc hạ từ O xuống CD
Ta CM : OH = OB = R ( O )
Tia CO cắt tia đối của tia By tại E
Xét tam giác OAC và OBE có :
góc A + góc B = 900 ( t/c tiếp tuyến )
góc AOC = BOE ( đối đỉnh )
OA = OB (=R)
=> tam giác OAC = OBE ( g.c.g ) => OC = OE
Tam giác DEC có DO vừa là đường cao vừa là trung tuyến nên là tam giác cân. Khi đó DO cũng là đường phân giác
=> Ta có : OH vuông góc CD, OH = OB = R ( O ) nên CD tiếp xúc với (O) tại H