Xác định parabol (P): y = a x 2 + bx + c, a ≠ 0 biết c = 2 và (P) đi qua B (3; −4) và có trục đối xứng là x = − 3 2
A. y = − 1 3 x 2 − x + 2
B. y = − x 2 − x + 1
C. y = − 1 3 x 2 + x + 2
D. y = − 1 6 x 2 − 3 2 x + 2
Xác định parabol \(y = a{x^2} + bx + c\) , biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12)
Đồ thị hàm số \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:
\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)
Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):
\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow - b = 12a \Leftrightarrow 12a + b = 0\)
\(a{.6^2} + 6b + c = - 12 \Leftrightarrow 36a + 6b + c = - 12\)
Từ 3 phương trình trên ta có: \(a = 3;b = - 36,c = 96\)
=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)
Xác định parabol (P): y = ax2 + bx + c biết rằng parabol (P) đi qua ba điểm A(1; 1), B(-1; -3) và O(0; 0).
A. y = x2 + 2x.
B. y = -x2 – 2x.
C. y = -x2 + 2x.
D. y = x2 – 2x.
Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:
Vậy (P): y = -x2 + 2x
Chọn C.
Xác định parabol (P): y = a x 2 + bx + c, a ≠ 0 biết (P) đi qua A (2; 3) có đỉnh I (1; 2)
A. y = x 2 − 2x + 2
B. y = x 2 − 2x + 3
C. y = x 2 + 2x + 3
D. y = x 2 + 2x – 3
Xác định parabol (P) biết:
a)\(\left(P\right):y=ãx^2+bx+c\)đi qua các điểm A( 1; 1) , B( -1; -3) , O( 0; 0)
b) \(\left(P\right):y=x^2+bx+c\)đi điểm A( 1; 0) và đỉnh I có tung độ bằng -1
Xác định parabol (P): y = a x 2 + bx + c, biết rằng (P) đi qua ba điểm A (1; 1), B(−1; −3) và O (0; 0).
A. y = x 2 + 2x.
B. y = − x 2 − 2x.
C. y = − x 2 + 2x.
D. y = x 2 − 2x.
Xác định parabol y = 3x^2+bx+c, biết rằng parabol đó đi qua A(2;19) và nhận đường thẳng x = -2/3 làm trục đối xứng.
Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$
$\Rightarrow 2b+c=7(1)$
$x=\frac{-2}{3}$ là trục đối xứng
$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$
$\Rightarrow b=4(2)$
Từ $(1); (2)\Rightarrow c=-1$
Vậy parabol có pt $y=3x^2+4x-1$
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)
a, xác định parabol y = ax^2 + bx + c đạt cực tiểu bằng 4 tại x = -2 và đồ thị đi qua A ( 0 ; 6)
b, xác định GTNN của hàm số y = x^2 - 4x + 1
a.
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-2\\4a-2b+c=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\4a-2.4a+6=4\\c=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4a=2\\a=\dfrac{1}{2}\\c=6\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x^2+2x+6\)
b.
\(y_{min}=y_{CT}=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.1-\left(-4\right)^2}{4.1}=-3\)