dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\cos4x=\cos3x\cos2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
dùng công thức hạ bậc để giải các phương trình sau :
a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos x=0\)
Giải các phương trình sau:
\(\begin{array}{l}a)\;sin2x + cos3x = 0\\b)\;sinx.cosx = \frac{{\sqrt 2 }}{4}\\c)\;sinx + sin2x = 0\end{array}\)
\(\begin{array}{l}a)\;sin2x + cos3x = 0\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) + cos3x = 0\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) = - cos3x\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) = cos\left( {\pi - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - 2x = \pi - 3x + k2\pi \\\frac{\pi }{2} - 2x = - \pi + 3x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{{3\pi }}{{10}} + k\frac{{2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
\(\begin{array}{l}b)\;sinx.cosx = \frac{{\sqrt 2 }}{4}\\ \Leftrightarrow \frac{1}{2}\;sin2x = \frac{{\sqrt 2 }}{4}\\ \Leftrightarrow sin2x = \frac{{\sqrt 2 }}{2} = sin\left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{4} + k2\pi \\2x = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{8} + k\pi \\x = \frac{{3\pi }}{8} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
\(\begin{array}{l}c)\;sinx + sin2x = 0\\ \Leftrightarrow sinx = - sin2x\\ \Leftrightarrow sinx = sin( - 2x)\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2x + k2\pi \\x = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\frac{{2\pi }}{3}\\x = - \pi + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Biến đổi thành tích các biểu thức sau A= cos2x + sin4x - cos6x B = sinx - sin2x + sin5x + sin8x
\(A=cos2x+sin4x-cos6x\)
\(=\left(cos2x-cos6x\right)+sin4x=-2.sin4x.sin\left(-2x\right)+sin4x\)
\(=2sin4x.sin2x+sin4x=sin4x\left(2sin2x+1\right)\)
\(B=sinx-sin2x+sin5x+sin8x\)
\(=\left(sin5x+sinx\right)+\left(sin8x-sin2x\right)\)
\(=2.sin3x.cos2x+2.sin3x.cos5x\)
\(=2sin3x\left(cos2x+cos5x\right)\)