Tìm m để h/s song song, vuông góc
\(d_1:y=\frac{m}{1-m}x+\frac{2\left(m+2\right)}{m-1}\) ;
\(d_2:y=\frac{3m}{3m+1}x-\frac{5m+4}{3m+1}\)
Tìm m để h/s song song, vuông góc
\(d_1:y=\frac{m}{1-m}x+\frac{2\left(m+2\right)}{m-1}\) ;
\(d_2:y=\frac{3m}{3m+1}x-\frac{5m+4}{3m+1}\)
Tìm các giá trị của m để hai đường thẳng:
\(\left(D_1\right):y=2x+3\) và \(\left(D_2\right):y=\left(m-1\right)x+2\)
a, Cắt nhau.
b, Song song với nhau.
c, Vuông góc với nhau.
Cho hàm số bậc nhất \(y=\left(2m-1\right)x-3m+5\) có đồ thị hàm số là đường thẳng (d)
a) Vẽ đồ thị hàm số khi m = 2
b) Tìm m để (d) song song với đường thẳng (\(d_1\)) : \(y=-3x+2\)
c) Tìm m để (d) cắt đường thẳng (\(d_1\)) : \(y=-3x+2\) tại 1 điểm nằm trên trục tung
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
11. Viết pt đường thẳng \(d\) trong các trường hợp sau
a. \(d\) đi qua \(M\left(2;-3\right)\) và song song với \(d_1:y=-2x+5;\)
b. \(d\) đi qua \(N\left(-1;-2\right)\) và vuông góc với \(d_2:y=-x-8;\)
a: (d)//(d1)
=>(d): y=-2x+b
Thay x=2 và y=-3 vào (d), ta được:
b-4=-3
=>b=1
b: Vì (d) vuông góc (d2)
nên (d): y=x+b
Thay x=-1 và y=-2 vào (d), ta được:
b-1=-2
=>b=-1
Cho hai đường thẳng
\(\cdot\left(d_1\right):y=\left(m^2-1\right)x+m+2\) \(\left(m\ne\pm1\right)\)
\(\left(d_2\right):y=\left(5-m\right)x+2m+5\) \(\left(m\ne5\right)\)
Tìm m để hai đường thẳng trên song song
Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)
Tìm các giá trị của m để hai đường thẳng song song với nhau:
\(\left(d_1\right):y=\left(2-m^2\right)x+m-5\) và \(\left(d_2\right)y=mx+3m-7\)
Cho 3 đường thẳng \(\left(d_1\right):y=\left(m^2-1\right)x-m^2+3\)
\(\left(d_2\right):y=x+5\)
\(\left(d_3\right):y=-x+1\)
a,Chứng minh rằng với mọi giá trị của m thì đường thẳng \(\left(d\right)\) luôn đi qua 1 điểm cố định
b, tìm m biết \(\left(d_1\right)\) song song với \(\left(d_2\right)\)
c, chứng minh nếu \(\left(d_1\right)\) song song với \(\left(d_2\right)\) thì \(\left(d_1\right)\perp\left(d_2\right)\)
d,tìm m để 3 đường thẳng đồng quy
HELP ME THỨ 3 PẢI NỘP RÙI
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
Cho \(y=\frac{1}{3}x^3-\frac{m}{2}x^2+\frac{1}{3};\left(C_m\right)\). Gọi M là điểm thuộc \(\left(C_m\right)\) có hoành độ bằng -1. Tìm m để tiếp tuyến tại M của \(\left(C_m\right)\) song song với đường thẳng \(5x-y=0\)
Tiếp tuyến d của đồ thị hàm số tại điểm có hoành độ x = -1, có dạng :
\(y=\left(m+1\right)x+\frac{m}{2}+1\)
D song song với đường thẳng y = 5x\(\Leftrightarrow\begin{cases}m+1=5\\\frac{m}{2}+1\ne0\end{cases}\)\(\Leftrightarrow m=4\)
Vậy m = 4 là giá trị cần tìm
Tìm giá trị của $m$ để các đường thẳng
\(\left(d_1\right):mx+\left(m-1\right)y=3m+4;\)
\(\left(d_2\right):2mx+\left(m+1\right)y=m-4\)
cắt nhau, song song, trùng nhau.
Ta có: \(\hept{\begin{cases}\left(d_1\right):mx+\left(m-1\right)y=3m+4\\\left(d_2\right):2mx+\left(m+1\right)y=m-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(d_1\right):mx-3m-4=\left(1-m\right)y\\\left(d_2\right):2mx+4-m=-\left(m+1\right)y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(d_1\right):\frac{m}{1-m}x-\frac{3m+4}{1-m}=y\\\left(d_2\right):-\frac{2m}{m+1}x+\frac{m-4}{m+1}=y\end{cases}}\) khi đó ta có:
Để (d1) // (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}\ne\frac{m-4}{m+1}\end{cases}}\Rightarrow m=3\)
Đề (d1) cắt (d2) thì: \(\frac{m}{m-1}\ne\frac{2m}{m+1}\Rightarrow m\ne\left\{0;3\right\}\)
Để (d1) trùng (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}=\frac{m-4}{m+1}\end{cases}}\Rightarrow m=0\)
Để(d1)//(d2)\(\Rightarrow m\text{=}3\)
Để(d1)cắt(d2)\(\Rightarrow m\ne\left(0;3\right)\)
Để(d1)trùng(d2)\(\Rightarrow m\text{=}0\)