Cho 3 đường thẳng \(\left(d_1\right):y=\left(m^2-1\right)x-m^2+3\)
\(\left(d_2\right):y=x+5\)
\(\left(d_3\right):y=-x+1\)
a,Chứng minh rằng với mọi giá trị của m thì đường thẳng \(\left(d\right)\) luôn đi qua 1 điểm cố định
b, tìm m biết \(\left(d_1\right)\) song song với \(\left(d_2\right)\)
c, chứng minh nếu \(\left(d_1\right)\) song song với \(\left(d_2\right)\) thì \(\left(d_1\right)\perp\left(d_2\right)\)
d,tìm m để 3 đường thẳng đồng quy
HELP ME THỨ 3 PẢI NỘP RÙI
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)