Cho tam giác ABC biết trọng tâm G (\(\frac{1}{3};\frac{7}{3}\) )
BC:x-2y+6
trung tuyến BM:x-7y+6=0
Tìm A,B,C
Bài 1: Giải phương trình sau: \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Bài 2: Cho tam giác ABC vuông tại A. G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC=a, và góc giữa hai véctơ \(\overrightarrow{GB}\) và \(\overrightarrow{GD}\) nhỏ nhất.
1.
\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)
\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)
\(\Leftrightarrow a=\sqrt{3}b\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
\(\Leftrightarrow2x^2-4x+2=0\)
\(\Leftrightarrow x=1\)
Bài 2:
Đặt \(AB=x>0\)
\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)
\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)
\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)
Ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)
\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)
\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)
\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)
\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)
Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)
1. cho tam giác ABC đg cao AD cắt BE tại H . Vẽ trung tuyến AM . Gọi G là trọng tâm tam giác ABC biết HG//BC
c/m : tanB.tanC=3
2. cho tam giác ABC vg tại A
c/m :\(\frac{\tan B}{2}=\frac{AC}{AB+BC}\)
2.
Từ B kẻ đường phân giác BD ( D thuộc AC)
Ta có : \(tan\left(\frac{\widehat{B}}{2}\right)=tan\widehat{ABD}=\frac{AD}{AB}\)
Mà theo tính chất đường phân giác : \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\)
\(\Rightarrow tan\left(\frac{\widehat{B}}{2}\right)=\frac{AC}{AB+BC}\) (đpcm)
1/ Bạn tham khảo ở đây :)
http://olm.vn/hoi-dap/question/633787.html
Bài 1 :Cho tam giác ABC có hai đường trung tuyến BE và CF cắt nhau tại G.Chứng minh G là trọng tâm của tam giác ABC.(Gợi ý trọng tâm là điểm chung của ba đường trung tuyến nên trọng tâm là điểm chung của...)
Bài 2 Cho tam giác ABC có đường trung tuyến AD và trọng tâm G.Đã biết GA=2/3 AD,hãy chứng minh GA=2GD,AD=3GD.
Cho tam giác ABC có AB = AC, góc BAC=90 độ. Biết rằng M(1;-1) là trung điểm của cạnh BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác.
Hãy tìm tọa độ các đỉnh tam giác ABC ?
Vì M(1;-1) là trung điểm BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác ABC nên \(\overrightarrow{MA}=3\overrightarrow{MG}\) từ đó tìm được A(0;2)
Vì tam giác ABC cân tại A nên \(BC\perp MA\) tức là đường thẳng BC đi qua M(1;-1), nhận \(\overrightarrow{MA}=\left(-1;3\right)\) làm vec tơ pháp tuyến.
Do đó đường thẳng BC có phương trình \(-1\left(x-1\right)+3\left(y+1\right)=0\)
hay \(-x+3y+4=0\)
Do tam giác ABC vuông tại A nên MB=MC=MA=\(\sqrt{10}\)
Suy ra B, C nằm trên đường tròn \(\left(x-1\right)^2+\left(y+1\right)^2=10\)
Từ đó tọa độ B, C là nghiệm của hệ phương trình
\(\begin{cases}-x+3y+4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)
Giải hệ phương trình thu được (x;y) = (4;0) và (x;y) = (-2;2)
Vậy A(0;2), B(4; 0), C(-2;-2)
Trong mặt phẳng Oxy cho tam giác ABC biết A(2;1);B(7;4);C( 6;9). Gọi G là trọng tâm ABC. 1/ Tìm tọa độ trọng tâm G của tam giác ABC. 2 Với M(–2:19). Chứng minh ba điểm A, G, M thẳng hàng.
Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)
\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)
\(\Rightarrow x=...\)
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Bài 1 Cho tam giác ABC có hai đường trung tuyến BE và CF cắt nhau tại G.Chứng minh G là trọng tâm của tam giác ABC.(GỢI Ý Trọng tâm là điểm chung của ba đường trung tuyến nên trọng tâm là điểm chung của ...)
BÀI 2 Cho tam giác ABC có đường trung tuyến AD VÀ trọng tâm G.Đã biết GA=2/3 AD.hãy chứng minh GA=2GD,AD=3GD.
HELP ME,GIÚP M VỚI MÌNH SẼ LIKE ,MÌNH ĐANG CẦN RẤT GẤP
hông biết
Trong không gian Oxyz, cho tam giác ABC, biết A(1;-2;4), B(0;2;5), C(5;6;3). Tọa độ trọng tâm G của tam giác ABC là
A. G(2;2;4)
B. G(4;2;2)
C. G(3;3;6)
D. G(6;3;3)
cho tam giác ABC vuông tại A trung tuyến AD ,trọng tâm G . a)cho biết \(\frac{AB}{AC}=\frac{3}{4}\)và AD=5cm . Tính diện tích của tam giác ABC
b)qua G kẻ đường thẳng cắt AB, AC lần lượt tại M,N .CMR \(\frac{AB}{AM}+\frac{AC}{AN}=3\)