cho tam giác abc có ab bé hơn ac và ad là tia phan giác góc a. cm db bé hơn dc
Cho tam giác ABC có AB bé hơn AC và AD là tia phân giác của góc A. Cm DB bé hơn DC
Xét ΔABC có AD là phân giác
nên DB/DC=AB/AC
mà AB<AC
nên DB<DC
tam giác abc vuông tại a có ab bé hơn ac . vẽ ah vuông góc bc ( h thuộc bc ). khẳng định nào sau đây là đúng : hb bé hơn hc, hc bé hơn hb, ab bé hơn ah, ac bé hơn ah
hb bé hơn hc đúng nhé
kết bạn với mình nhé
hb bé hơnhc
đúng thì h
ai kb cứ việc
Cho tam giác ABC có AB bé hơn AC, tia phân giác góc A cắt BC tại H. Trên AC, lấy M sao cho AM=AB. Hai tia AB và MH cắt tại Đ
a) tam giác AHB=tam giácAHM
b) MD= BC
c) AH vuông góc CD
\(a,Xét\Delta AHBvà\Delta AHMcó\)
\(AB=AM\left(gt\right)\)
\(\widehat{A1}=\widehat{A2}\left(AHlàtiaphângiáccủa\widehat{A}\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta AHB=\Delta AHM\left(c-g-c\right)\left(đpcm\right)\)
\(b,Tacó\widehat{ABH}+\widehat{HBD}=180^0\left(k/bù\right)\)
\(Và:\widehat{AMH}+\widehat{HMC}=180^0\left(kề/bù\right)\)
\(Mà:\widehat{ABH}=\widehat{AMH}\left(\Delta ABH=\Delta AMH\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{HMC}\)
\(Xét\Delta BHDvà\Delta MHCcó:\)
\(BH=MH\left(\Delta AHB=\Delta AHM\right)\)
\(\widehat{BHD}=\widehat{MHC}\left(đ/đỉnh\right)\)
\(\widehat{HBD}=\widehat{HMC}\left(cmt\right)\)
\(\Rightarrow\Delta BHD=\Delta MHC\left(g-c-c\right)\)
\(\Rightarrow HD=HC\left(2c.t.ứ\right)\)
Lại có: \(\left\{{}\begin{matrix}BC=BH+HC\\MD=MH+HD\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}BH=MH\left(cmt\right)\\HC=HD\left(cmt\right)\end{matrix}\right.\)
\(MD=BC\left(đpcm\right)\)
\(c,Chứngminhtươngtựtađược:AD=AC\)
\(Xét\Delta ADHvà\Delta ACHcó:\)
\(\widehat{A1}=\widehat{A2}\)
\(AD=AC\left(cmt\right)\)
\(AHlàcạnhchung\)
\(\Rightarrow\Delta ADH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}\left(2.g.t.ứ\right)\)
\(Mà:\widehat{AHD}+\widehat{AHC}=180^0\)
\(\Rightarrow\widehat{AHD}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AH\perp CD\)
Cho tam giác ABC có góc A= 60 độ, AB< AC , đường cao BH ( H thuộc AC)
a) So sánh góc ABC và góc ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A (D thuộc BC). Vẽ BI vuông góc AD tại I. CMR tam giác AIB= tam giác BHA
c) Tia BI cắt AC ở E. CMR tam giác ABE đều
d) CMR DC> DB
Cho tam giác ABC, D thuộc BC và DB/DC bằng AB/AC. Chứng minh rằng AD là phân giác của góc A
Hình thang ABCD có diện tích là 225 cm2 . Đáy bé AB bằng 12 cm , đáy lớn DC bằng 18 cm . Tính diện tích tam giác ABC và diện tích tam giác ACD .
Cho tam giác ABC có góc B lớn hơn hoặc bằng 60o . CMR : AB+AC bé hơn hoặc bằng 2.BC
Cho tam giác ABC có AD là tia phân giác của góc A, D thuộc BC. Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
a) Chứng minh: Tam giác ABE cân tại B
b)Chứng minh: DB = BE DC AC
c) Chứng minh: DB = AB DC AC
d) Biết AB= 2,5cm; AC= 5cm; DC= 3cm. Tính độ dài đoạn thẳng BD.
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC