cmr với mọi số tự nhiên a thì biểu thức
\(A=\frac{a^5}{120}+\frac{a^4}{12}+\frac{7a^3}{24}+\frac{5a^2}{12}+\frac{a}{5}\)là số tự nhiên
Chứng minh rằng với mọi \(a\inℕ\) thì biểu thức \(A=\frac{a^5}{120}+\frac{a^4}{12}+\frac{7a^3}{24}+\frac{5a^2}{12}+\frac{a}{5}\)có giá trị là sô tự nhiên
Với n là số nguyên. CMR: các biểu thức sau đều là số nguyên
A= \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)
B= \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\)
C= \(\frac{n^3}{24}+\frac{n^2}{8}+\frac{n}{12}\)(Với n là số chắn)
+ Ta có : \(n^5-n=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
+ \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮5\)
\(\Rightarrow n^5-n⋮5\)
+ \(n^3-n=\left(n-1\right)n\left(n+1\right)⋮3\)
\(B=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{7n}{15}+\frac{n}{5}+\frac{n}{3}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{15n}{15}\)
=> B là số nguyên
\(A=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\) \(=\frac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left[n^3+9n^2+26n+24\right]}{120}\) \(=\frac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\) \(=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)
+ \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)là tích 5 số nguyên liên tiếp\
\(\Rightarrow\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3\\n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮5\end{matrix}\right.\) (1)
+ trong 5 số nguyên liên tiếp tồn tại ít nhất 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮8\) ( do tích 2 số chẵn liên tiếp chia hết cho 8 ) (2)
+ Từ (1) và (2) => \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
=> đpcm
+ \(C=\frac{n^3+3n^2+2n}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
+ \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (3)
+ n và n + 2 là 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+2\right)⋮8\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\) (4)
+ Từ (3) và (4) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)
=> C là số nguyên
Câu nào đúng, câu nào sai?
a) 4 và 5 lần lượt là tử số và mẫu số của phân số $\frac{4}{5}$.
b) Tử số của phân số là số tự nhiên nằm trên gạch ngang.
c) 12 là mẫu số của các phân số $\frac{5}{{12}}$ ; $\frac{{12}}{7}$ ; $\frac{{11}}{{12}}$.
d) $\frac{2}{3}$ đàn gà là gà mái có nghĩa là số con gà của cả đàn gà chia thành 3 phần bằng nhau, gà mái gồm 2 phần như vậy.
a) Đúng
b) Đúng
c) Sai vì phân số $\frac{{12}}{7}$ có mẫu số là 7
d) Đúng
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
3.
Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)
Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45
CMR với mọi số tự nhiên n nhỏ hơn hoặc bằng 3:\(B=\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}< \frac{1}{12}\)
cho a là số tự nhiên nhỏ nhất khác 0.Biết rằng a nhan với \(\frac{5}{12}\)và \(\frac{10}{12}\).Vậy số tự nhiên a là
Cho biếu thức \(A=\frac{a^3}{24}+\frac{a^2}{8}+\frac{a}{12}\)với \(a\)là số tự nhiên chẵn.Hãy chứng tỏ A nguyên.(Giúp mình bài này với nhé,bài này mình thiếu 1 dữ kiện nữa là ra rồi)
\(\frac{a^3+3a^2+2a}{24}=\frac{a\left(a+1\right)\left(a+2\right)}{24}\)
de thay h 3 so tu nhien lien tiep chia het cho 6
do a la so tu nhien chan nen hien nhien a phai chia het cho 4
\(\Rightarrow\)chia het cho 24\(\Rightarrow\) A la so nguyen
Cho \(A=\frac{5}{2^2}+\frac{10}{3^2}+\frac{17}{4^2}+...+\frac{226}{15^2}\)\
CMR : A ko phải là số tự nhiên
\(A=\frac{5}{2^2}+\frac{10}{3^2}+\frac{17}{4^2}+...+\frac{226}{15^2}=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+\frac{4^2+1}{4^2}+.+\frac{15^2+1}{15^2}.\)
Vì A có 14 số hạng nên : \(A=1+\frac{1}{2^2}+1+\frac{1}{3^2}+1+\frac{1}{4^2}+...+1+\frac{1}{15^2}=14+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{15^2}.\)
\(\Rightarrow A< 14+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}=14+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{14}-\frac{1}{15}.\)
\(\Rightarrow A=15-\frac{1}{15}< 15.\) Lạy có :
\(A>14+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{15.16}=14+\frac{1}{2}-\frac{1}{16}< 14,5.\)
Vậy A không phải là số tự nhiên \(14,5< A< 15.\)