tim x thuoc z biet:
a)2x-1+2x+1+2x+2=104
b)3x+2+3x+1+3x+3x-1=120
tim x nguyen biet:
a 8.(x mu 2 +3).(5-x)
b)(2x + 1)mu 2=25
c) (1-3x)mu3 =64
d)(4-x)mu3 =-27
e) xmu2 -5x =0
b: \(\left(2x+1\right)^2=25\)
=>\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left(1-3x\right)^3=64\)
=>\(\left(1-3x\right)^3=4^3\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1
d: \(\left(4-x\right)^3=-27\)
=>\(\left(4-x\right)^3=\left(-3\right)^3\)
=>4-x=-3
=>x=4+3=7
e: \(x^2-5x=0\)
=>\(x\left(x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
1) PTTNT
a) x^2 - 4x^2y + 4xy
b)x^2 + 3x + x - 3y
2) Tim GTLN
-2x^2 + 3x - 5
3) tim x,y thuoc z
3xy + 6x - y = 7
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
Bài 1:
a)x2-4x2y+4xy
=x(x-4xy+y)
b)đề sai
Bài 3:
3yx + 6x - y = 7
<=> x(3y+6) - (3y+6) = 27
<=> (3y+6)(x+1) = 27
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 | |
3y+6 | 27 | -27 | 9 | -9 | 3 | -3 | 1 | -1 | |
x | 0 | -2 | 2 | -4 | 8 | -10 | 26 | -28 | |
y | 7 | -11 | 1 | -5 | -1 | -3 | \(-\frac{5}{3}\) | \(-\frac{7}{3}\) |
Vậy...
Tim X,y thuộc Z
(X-3).(2x+1)=7
(2x+1).(3x-2)=-55
Xy+3x-7y=21
tim STN x biet
a, 21 thuoc B(x-3)
b, 1-x thuoc U(17)
c, 2x+3 thuoc B(2x-1)
d, x+1 thuoc U(x mu 2+x+3)
e, 3x+1:11-2x
a: \(\Leftrightarrow x-3\inƯ\left(21\right)\)
\(\Leftrightarrow x-3\in\left\{-3;-1;1;3;7;21\right\}\)
hay \(x\in\left\{0;2;4;6;10;24\right\}\)
b: \(\Leftrightarrow x-1\in\left\{1;-1;17\right\}\)
hay \(x\in\left\{2;0;18\right\}\)
c: \(\Leftrightarrow2x-1+4⋮2x-1\)
\(\Leftrightarrow2x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{1;0\right\}\)
d: \(\Leftrightarrow x^2+x+3⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(3\right)\)
\(\Leftrightarrow x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;2\right\}\)
Tim x thuoc z de:
a, x3 - 3x2 - 3x - 1 chia het cho x2 + x + 1
b, x3 - x2 + 2x + 7 chia het cho x2 + 1
Tìm x, biết:
a, (x+8).(x+6)-x^2=104
b, (x+1).(x+2)-(x-3).(x+4)=6
c, 3.(2x-1).(x+2)-2.(3x+2).(x-4)=5
a: \(\Leftrightarrow14x=56\)
hay x=4
a)3x(x+1)-2x(x+2)=1-x
b)1/3x2-4x+2x(2-3x)=0
tim x
\(a,\)\(3x\left(x+1\right)-2x\left(x+2\right)=1-x\)
\(\Leftrightarrow3x^2+3x-2x^2-4x=1-x\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(b,\)\(\frac{1}{3}x^2-4x+2x\left(2-3x\right)=0\)
\(\Leftrightarrow\frac{1}{3}x^2-4x+4x-6x^2=0\)
\(\Leftrightarrow-\frac{17}{3}x^3=0\)
\(\Leftrightarrow x=0\)
Giúp mk vs ạ , mk cần gấp
đề : phân tích đa thức thành nhân tử
138 : 12 x^2 y^2 - 8xy ^2 z^2 - 0.1 z^2 z^3
139 : 3x^2 (2x + y ) - 5x(2x+y) +2x+y
141: ( 2x^2 +1 ) (3x-2) - x^2 ( 1-x)^2 - ( 2x+1 )( 1-3x)^3
142: ( x^2- x+2 )(x-1)- x^2( 1-x)^2- ( 2x+1)(1-x)^3
143: 1945.3216-1945.3321+ 1945.105
144: 1975.304+23.1975-326.1975
145 : 3x^2 (y+7)-65 ( y +7) Tại x = -5 và y = 1954
146 : 13y( x-4) -9(4-x) tại x = 1010 và y = 7
tim x thuoc z: x+4 chia het cho x-1 ;
2x-5 chia het cho 2x-1 ;
3x+1 chia het cho x-3 ;
x2 +2x+5 chia het cho x+1
tim x thuoc Z biet
a) 17-(2x-11) = 12-3x
b) /2x-3/ = 7
c) (2x-1)^4 = 16
d) (17-2x )^3=-125
a) 17-(2x-11) = 12-3x
2x-11 = 17-12+3x
2x-11 = 5+3x
2x-3x = 5+11
-x = 16
x = -16
b, |2x-3|=7
=>2x-3=7 hoặc 2x-3=-7
=>2x=10 hoặc 2x=-4
=>x=5 hoặc x=-2
c, (2x-1)4 = 16
(2x-1)4 = 24
2x-1=2
2x=3
x=3/2
d, (17-2x)3 = -125
(17-2x)3 = (-5)3
17-2x=-5
2x=17-(-5)
2x=22
x=11
a, => 17-2x+11 = 12-3x
=> 28-2x=12-3x
=> 28=12-3x+2x = 12-x
=> x=12-28 = -16
b, => 2x-3=7 hoặc 2x-3=-7
=> x=5 hoặc x=-2
c, => 2x-1=2 hoặc 2x-1=-2
=> x=3/2 hoặc x=-1.2
d, => 17-2x=-5
=> 2x=17-(-5) = 22
=> x=22:2 = 11
Tk mk nha