100:100+100+100-1=?
(1^100+2^100+...+10^100):(1^100+2^100+...+10^100)
So sánh bt: \(M=\dfrac{100^{100}+1}{100^{99}+1};N=\dfrac{100^{101}+1}{100^{100}+1}\)
Ta có:
\(M=\dfrac{100^{100}+1}{100^{99}+1}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\)
\(N=\dfrac{100^{101}+1}{100^{100}+1}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)
\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)
Mà: \(100^{101}>100^{100}\)
\(\Rightarrow100^{101}+100>100^{100}+100\)
\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)
\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)
\(\Rightarrow N< M\)
Tính
A=1.(100-1)+2.(100-2)+3.(100-3)+..............+99.(100-99)
B=1.(100+1)+2.(100+2)+3.(100+3)+...........+99.(100+99)
100 + 99/2 + 98/3 + .......... 2/99 + 1/100 : 100/2 + 100/3 +.......+ 100/100+100/101
Trả Lời:
Đặt vế đầu là A, vế sau là B
Tính A=100+99/2+98/3+...+2/99+1/100
A=1+(1+99/2)+(1+98/3)+...+(1+2/99)+(1+1/100)
A=101/101+101/2+101/3+...+101/99+101/100
A=101(1/2+1/3+...+1/100+1/101) (1)
Tính B=100/2+100/3+...+100/100+100/101
B=100(1/2+1/3+...+1/100+1/101) (2)
Từ (1)(2) suy ra:
A÷B=101(1/2+1/3+...+1/100+1/101)
÷100(1/2+1/3+...+1/100+1/101)
A÷B=101÷100=101/100
Cứ làm theo mình đi đúng đấy! 🎖🎖🎖
so sánh hay phân số A=100^100-1/100^100-5 và B=1000^100+5/100^100+1
hẹp
\(A=\dfrac{100^{100}-1}{100^{100}-5}=\dfrac{\left(100^{100}-1\right)\left(100^{100}+1\right)}{\left(100^{100}-5\right)\left(100^{100}+1\right)}=\dfrac{100^{200}-1}{\left(100^{100}-5\right)\left(100^{100}+1\right)}\)
\(B=\dfrac{100^{100}+5}{100^{100}+1}=\dfrac{\left(100^{100}+5\right)\left(100^{100}-5\right)}{\left(100^{100}-5\right)\left(100^{100}+1\right)}=\dfrac{100^{200}-25}{\left(100^{100}-5\right)\left(100^{100}+1\right)}\)
\(\Rightarrow A>B\)
so sanh A va B
A = 100^101 + 1 / 100^100 + 1
B = 100^100 + 1 / 100^99 + 1
A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B
(100-1).(100-2). ... .(100-99).(100-100)=???
(100-1).(100-2). ... .(100-99).(100-100)
=(100-1).(100-2). ... . (100-99).0
=0
CHÚC BẠN HỌC GIỎI
\(\left(100-1\right).\left(100-2\right)......\left(100-99\right).\left(100-100\right)\)
\(=\left(100-1\right).\left(100-2\right)......\left(100-99\right).0=0\)
kết quả bằng 0
so sanh
A=100^100+1 /100^99+1 ; D=100^99+1/100^89+1
So sánh hai phân số: 100^100+1/100^99+1 và 100^99+1/100^89+1
(100-1).(100-2).(100-3)...(100-199).(100-200)
Ta có :\(\left(100-1\right).\left(100-2\right).....\left(100-100\right)....,\left(100-200\right)\)
\(=99.98.....0.....\left(-99\right).\left(-100\right)\)
\(=0\)(Vì một số nhân với 0 đều có kết quả bằng 0)
STUDY WELL!
(100-1).(100-2).(100-3)...(100-199).(100-200)
= 99 x 98 x 97 x ... -99 x -100
= \(0\)( vì nhân vói số âm và có 0 cũng = 0)