Cho tam giác ABC vuông tại A, phân giác AD.
a, Tính AB, AC; biết DB=15, DC=20
b, Đường cao AH, phân giác của góc HAB cắt HB tại E, phân giác của góc HAC cắt HC tại F. Tính AH, HE, HF
Cho tam giác ABC vuông tại A, AB=6cm, AC =8cm. Phân giác AD.
a)Tính độ dài BD và CD b) Kẻ DH vuông góc với AB. Tính DH, AD .
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD.
a). Chứng minh △ABC = △ADC.b). Chứng minh AC là tia phân giác của góc BCD.
a) Xét hai tam giác vuông: ∆ABC và ∆ADC có:
AC chung
AB = AD (gt)
⇒ ∆ABC = ∆ADC (hai cạnh góc vuông)
b) Do ∆ABC = ∆ADC (cmt)
⇒ ∠BCA = ∠DCA (hai góc tương ứng)
⇒ CA là tia phân giác của ∠BCD
Cho tam giác ABC vuông tại A.AB=30cm,AC=40cm,đường cao AH,trung tuyến AM,phân giác AD.
a,Tính BH,MH,MC.
b,Tính AH,AD.
c,Tính diện tích tam giác AHD và tam giác ADM.
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=50(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay BH=18(cm)
Ta có: ΔBAC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(MB=MC=\dfrac{BC}{2}=25\left(cm\right)\)
Bài 4: Cho tam giác ABC. Gọi D là trung điểm của AB, E là trung điểm của BC. Biết AC = 8cm. DE Tính
Bài 5: Cho tam giác ABC vuông tại A (AB<AC), đường cao AH Tử H vẽ HE và HF lần lượt vuông góc với AB và AC (E = AB Fe AD.
a) Chứng minh AH = EF b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tử giác EHKF là hinh binh hành
: Cho tam giác ABC vuông tại A đường cao AD.
a) Tìm AH biết AB = 6cm, AC =8cm
b) Chứng minh
c) Chứng minh
Bạn có thể viết lại đề bài cho rõ hơn được không ạ?
b) Chứng minh tg ABC đồng dạng với tg DBA
c) CM AB^2=BC.BD
a, Theo pytago \(BC^2-AB^2+AC^2\)
\(\Rightarrow BC^2=6^2+8^2=100\)
\(\Rightarrow BC=10cm\)
Ta có: \(AD.10=6.8\)
\(\Rightarrow AD=4,8cm\)
b, Xét \(\Delta ABC\) và \(\Delta DBA\) có:
\(\widehat{A}=\widehat{D}\)(=90 độ)
\(\widehat{C}\)chung
\(\Rightarrow\Delta ABC\sim\Delta DBA\)
c, Vì \(\Delta ABC\sim\Delta DBA\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BD}{BA}\)
\(\Rightarrow AB^2=BC.BD\)
-chúc bạn học tốt-
Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.
a, Chứng minh AD vuông góc với BC.
b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng
DA là tia phân giác của góc EDF.
Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.
a) Chứng minh: BD = CE.
b) Xác định dạng của ADE.
c) Chứng minh: DE // BC.
Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên
tia BA lấy điểm F sao cho BF = BC. Kẻ BD là phân giác của góc ABC (D AC). Chứng
minh rằng:
a) DE BC ; AE BD. b) AD < DC.
c) ADF = EDC. d) E, D, F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho
AN = AB. Gọi K là giao điểm của các đường thẳng AB và MN. Chứng minh rằng:
a) MB = MN. b) MBK = MNC.
c) AM KC và BN // KC. d) AC - AB > MC - MB.
Bài 5. Cho ABC cân tại A có góc A nhọn, hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh AE = AD
b) Chứng minh AH là phân giác của góc BAC và AH là trung trực của ED.
c) So sánh HE và HC.
d) Qua E kẻ EF // BD (F AC), tia phân giác góc ACE cắt ED tại I. Tính góc EFI.
Bài 1:
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
Suy ra: \(\widehat{EDA}=\widehat{FDA}\)
hay DA là tia phân giác của \(\widehat{EDF}\)
Bài 1: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD = 15cm; DC = 20cm. Tính AB, AC, AH,AD.
Bài 2: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=12cm; AC = 16cm. Tính HD,HB.HC.
Bài 3: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=24cm; AC = 32cm. Tính HD,HB,HC.
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Cho tam giác ABC. Vẽ phân giác ngoài tại A của tam giác ABC. Từ B kẻ d//AD.
a) C/m: d cắt AC tại E.
b) C/m: góc ABE = góc AEB.
c) Từ B kẻ b vuông góc với AD, từ A kẻ a//b. C/m: b vuông góc với d và a là pg góc BAC.
a: d//AD
AD cắt AC tại A
Do đó: d cắt AC tại E
b: Gọi Ax là tia đối của tia AB
=>góc xAC là góc ngoài tại đỉnh A của ΔABC
=>AD là phân giác của góc xAC
AD//BE
=>góc xAD=góc ABE và góc DAE=góc AEB
mà góc xAD=góc DAE
nên góc ABE=góc AEB
c: b vuông góc AD
d//AD
Do đó: b vuông góc d
) Cho tam giác ABC ( AB< AC ) đường phân giác AD. Kẻ BE, CF cùng vuông góc với AD.
a) CM tam giác BED đồng dạng với tam giác CFD
b) CM AB.AF=AC.AE
c) Gọi S là giao điểm của CE và BF. Chứng minh AS vuông góc với AF
Em tự vẽ hình nhé
a) Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\);
\(\widehat{BDE}=\widehat{CDF}\) (đối đỉnh)
\(\Rightarrow\Delta BED\sim\Delta CFD\) (g.g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC\:}=90^0\);
\(\widehat{BAE}=\widehat{CAF}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE\sim\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\)
c) Do \(BE//FC\) (cùng vuông góc \(AD\))
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{BE}{FC}\) mà \(\dfrac{BE}{FC}=\dfrac{BD}{CD}\) (do \(\Delta BED\sim\Delta CFD\))
Lại có \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (tính chất tia phân giác); \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (câu b)
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{AE}{AF}\Rightarrow SA//BE\) (ĐL Ta-let đảo)
\(\Rightarrow SA//CF\Rightarrow SA\perp AF\)
Bài 1: Cho tam giác abc có AB = 5cm AC = 7cm BC = 9cm. Đường phân giác AD. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, phân giác AD. Tính DB, DC