Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Anh
Xem chi tiết
👁💧👄💧👁
24 tháng 10 2019 lúc 10:51

P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.

Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)

Có: \(0\le a\le b\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)

CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

Khách vãng lai đã xóa
Bá Đạo Sever
Xem chi tiết
Akai Haruma
20 tháng 2 2017 lúc 23:21

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

Lightning Farron
20 tháng 2 2017 lúc 20:24

vao cau hoi hay OLM itm

Nguyễn Tiến Đạt
Xem chi tiết
Dương Đường Hương Thảo
Xem chi tiết
Girl
4 tháng 3 2018 lúc 6:15

Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath

lê trọng đại(Hội Con 🐄)...
12 tháng 3 2020 lúc 14:59

bị mù à

Khách vãng lai đã xóa
hỏi đáp
12 tháng 3 2020 lúc 14:59

em chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/240654494577.html

chúc em học tập vui vẻ và hiệu quả với olm

Khách vãng lai đã xóa
lê dạ quynh
Xem chi tiết
Hoàng Phúc
9 tháng 3 2016 lúc 20:41

Bn cần gấp ko?mk lm đc bài này

Nguyễn Văn Hiếu
9 tháng 3 2016 lúc 20:45

sai gì đấy chứ

lê dạ quynh
9 tháng 3 2016 lúc 21:03

mink đang cần gấp các bạn giúp mink nhé

Kenny Hoàng
Xem chi tiết
Đức Trần Hữu
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Đinh Đức Hùng
13 tháng 3 2017 lúc 20:52

\(a\le1;b\le1\Rightarrow a-1\le0;b-1\le0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\frac{1}{ab+1}\le\frac{1}{a+b}\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Chứng minh tương tự ta cũng có :

\(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\)

Cộng vế với vế ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)

\(\Leftrightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)  (đpcm)

FFPUBGAOVCFLOL
Xem chi tiết
Kiệt Nguyễn
11 tháng 3 2020 lúc 16:06

Câu này có rất nhiều trong CHTT, bạn vô tìm nhé!

Khách vãng lai đã xóa