Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aeris

Cho 3 số dương: \(0\le a\le b\le c\le\)1. CMR: \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Đinh Đức Hùng
2 tháng 2 2018 lúc 22:54

Bài này lớp 7 là khó đấy \(0\le a\le b\le c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\ge0}\)

\(\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)(*)

Vì \(0\le a\le b\le c\le1\) nên \(\hept{\begin{cases}ab\ge0\\1\ge c\end{cases}\Rightarrow ab+1\ge c}\)Kết hợp với (*) ta được :

 \(2\left(ab+1\right)\ge a+b+c\) \(\Leftrightarrow\frac{1}{ab+1}\le\frac{2}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2}{a+b+c}\)(1)

Chứng minh tương tự \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\text{ }\left(2\right)\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\text{ }\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)(đpcm)


Các câu hỏi tương tự
Nguyễn Tiến Đạt
Xem chi tiết
Dương Đường Hương Thảo
Xem chi tiết
lê dạ quynh
Xem chi tiết
Kenny Hoàng
Xem chi tiết
Đức Trần Hữu
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Phạm Quốc Anh
Xem chi tiết