Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Akari
Xem chi tiết
Trần Thị Đảm
Xem chi tiết
Unravel
10 tháng 5 2016 lúc 14:38

\(\frac{x-7}{y+1}=\frac{3}{4}\)

\(\Rightarrow x-7=\frac{3}{4}\left(y+1\right)\)

\(\Rightarrow\)\(x-7=\frac{3}{4}y+\frac{3}{4}\)

\(\Rightarrow x=\frac{3}{4}y+\frac{3}{4}+7=\frac{3}{4}y+\frac{31}{4}\)

Mà \(x+y=22\)

\(\Rightarrow\frac{3}{4}y+\frac{31}{4}+y=22\)

\(\frac{7}{4}y+\frac{31}{4}=22\)

\(\frac{7y+31}{4}=22\)

\(7y+31=88\)

\(7y=57\)

Mà 57 không chia hết cho 7 nên không tồn tại x, y thỏa mãn ( \(x,y\in Z\) theo giả thiết)

Vậy không tồn tại x, y thỏa mãn.

Trinh Ngoc Tri
Xem chi tiết
Neymar Jr
11 tháng 2 2018 lúc 14:10

1.

a,  \(x-14=3x+18\)                                                                       

\(\Rightarrow x-3x=18+14\)                                                                 

\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)

b, \(\left(x+7\right).\left(x-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)

c, \(\left|2x-5\right|-7=22\)                                                                     

\(\Rightarrow\left|2x-5\right|=22+7\)

\(\Rightarrow\left|2x-5\right|=29\)

\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)

d,  \(\left(\left|2x\right|-5\right)-7=22\)

\(\Rightarrow\left(\left|2x\right|-5\right)=29\)

\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)

e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)

Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)

Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)

\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)

     \(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)

      \(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)

Ta có : 

\(x+3+x+9+x+5=4x\)

\(\Rightarrow3x+\left(3+9+5\right)=4x\)

\(\Rightarrow4x-3x=17\)

\(\Rightarrow x=17\)

2. a , b sai đề bn 

c, \(\left(5x+1\right).\left(y-1\right)=4\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)

\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau : 

5x+11-12-24-4
y-1-44-22-11
x0-2/51/5-3/53/5-1
y-35-1302

d, \(5xy-5x+y=5\)

\(\Rightarrow\left(5xy-5x\right)+y=5\)

\(\Rightarrow5x.\left(y-1\right)+y=5\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau : 

5x+11-12-24-4
y-1-44-22-11
x0-21/5-3/53/5-1
y-35-1302



 

bin
15 tháng 4 2019 lúc 19:36

x - 14 = 3x + 18

x - 3x = 18 + 14

-2x= 32

x= 32 : (-2)

x=-16

Lê Nguyễn Phương Nhi
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
17 tháng 4 2023 lúc 20:10

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 20:03

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

789 456
25 tháng 4 2024 lúc 13:27

Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế. 

Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.

Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra: 
\[ x = \frac{3y}{5} \]

Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]

Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.

Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]

Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]

Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]

Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]

Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]

Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]

 

Chapi Beauty
Xem chi tiết
Ayatocute
23 tháng 1 2017 lúc 21:18

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

Ayatocute
23 tháng 1 2017 lúc 21:29

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

Nguyên Ngân Hà
Xem chi tiết
Ngô Chi Lan
29 tháng 8 2020 lúc 15:21

Bài làm:

Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)

Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)

=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)

Khách vãng lai đã xóa
ミ★Ƙαї★彡
29 tháng 8 2020 lúc 15:22

Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)

\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)

Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)

\(x=6;y=10;z=20\)

Khách vãng lai đã xóa
Nguyễn Thanh Tịnh
Xem chi tiết
Trần Minh Diệp
Xem chi tiết
Holmes Sherlock
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

789 456
25 tháng 4 2024 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)