Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D và tạo với AC 1 góc BDC= 110 độ. Tính góc nhọn B và C
Cho tam giác ABC biết góc nhọn tạo bởi 2 tia phân giác góc B, góc C bằng 60 độ.
a) Tính góc A của tam giác ABC
b) Tia phân giác góc B cắt AC tại D và tia phân giác góc C cắt AB tại E. CMR: góc BEC và góc BDC bù nhau
1> Tính số đo góc nhọn của tam giác ABC vuông tại A, biết phân giác BD của góc B tạo với AC góc BDC bằng 1100.
2> Cho tam giác vuông ABC có hai góc nhọn B và C hơn kém nhau 240. Tính góc ABC.
3> Cho tam giác ABC có góc C kém góc B 900. Kẻ tia phân giác của góc A cắt BC tại D. Tính góc ADB.
* Các bạn vẽ hình giùm mình với nhé.
Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)
1, Cho tam giác ABC và ADE có góc đỉnh A là hai góc đối đỉnh , trong đó 3 điểm B,A,E thẳng hàng . Phân giác trong của góc C và E cắt nhau tại F . Tính góc EFC theo góc B và D
2, Cho tam giác ABC biết rằng góc nhọn tạo bởi tia phân giác của góc B và C có số đo bằng 60 độ . Tính
a, Góc A
b, Tia phân giác góc B cắt AC ở D . Tia phân giác góc C cắt AB ở E . Chứng minh rằng hai góc BEC và BDC bù nhau
Bài 1: Cho tam giác ABC có góc A = 70*. Tia phân giác của B cắt tia phân giác của C ở I và cắt đường phân giác của góc ngoài tại C ở K. Tính góc BIC và góc BKC.
Bài 2: Cho tam giác ABC vuông góc tại A, kẻ đường cao AH. Tia phân giác của góc A cắt BC tại D. Biết góc DAH = 15*. Tính các góc của tam giác ABC.
Bài 3: Cho tam giác ABC có góc A, B, C là góc nhọn, góc A = 50*. Qua B kẻ đoạn thẳng BD vuông góc với AC (D thuộc AC). Qua C kẻ CE vuông góc với AB (E thuộc AB). Gọi H là giao điểm của BD và CE.
a) Tính góc ABD và góc ACE.
b) Tính góc DHE.
Cho tam giác ABC biết rằng góc nhọn tạo bởi các tia phân giác của góc B và góc C
a) Tính góc A
b) Tia phân giác của góc B cắt cạnh AC ở D và tia phân giác của góc C cắt cạnh AB ở E . CMR hai góc BEC và BDC bù nhau
Cho tam giác ABC biết rằng góc nhọn tạo bởi các tia phân giác của góc B và góc C có số đo =60
a) Tính số đo góc A của tam giác ABC
b)Tia phân giác của góc B cắt AC ở D và tia phân giác của góc C cắt AB ở E Chứng minh 2 góc BCE và BDC bù nhau
Bài 1: Cho tam giác MNP vuông tại M. Kẻ MH vuông góc với NP ( H thuộc NP )
a) Tìm các cặp góc phụ nhau trên hình
b) Tìm các cặp góc nhọn bằng nhau trên hình
Bài 2: Cho tam giác ABC có góc A = 60 độ , góc C = 50 độ. Tia phân giác của góc B cắt AC tại D. Tính góc ADB, CDB
Bài 3: Cho tam giác ABC, điểm M nằm trong tam giác đó. Tia BM cắt AC ở K
a) So sánh góc AMK và góc ABK
b) So sánh góc AMC và góc ABC
Bài 4: Cho tam giác ABC có góc A = 100 độ, góc B - góc C = 20 độ. Tính góc B, góc C
Bài 5: Cho tam giác ABC có góc B = 70 độ, góc C = 30 độ. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Tính góc BAC
b) Tính góc ADH
c) Tính góc HAD
Cho tam giác ABC. Biết góc nhọn tạo bởi tia phân giác của góc B và góc C là 60 độ . Phân giác góc B cắt AC ở D . Phân giác góc C cắt AB ở E. Chứng minh góc BEC và BDC bù nhau ( góc BEC + góc BDC = 180 độ )
1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA
a) Chứng minh: Tam giác OAH = tam giác OBH
b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN
c) Chứng minh AB vuông góc với OH
d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot
2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)
a) Chứng minh góc ABH = góc ACK
b) BH cắt CK tại E. Chứng minh AE vuông góc BC
c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?
3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Chứng minh: Tam giác AMB = tam giác DMC
b) Chứng minh: AC = BD và AC //BD
c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC
4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ
a) Tính số đo góc ACB
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
Bài 1. Cho tam giác ABC cân tại A có Â = 80o
a) Tính số đo các góc B, C của tam giác ABC
b) Tia phân giác của góc B cắt AC tại D. Tính số đo góc ADB.
Bài 2. Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D ∈ AC), CE vuông góc với AB (E ∈ AB),
BD và CE cắt nhau tại I. M là trung điểm BC. Chứng minh:
a) ∆BDC = CEB.
b) Tam giác IBC là tam giác cân.
c) IE = ID.
d) Ba điểm A, I, M thẳng hàng.