Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đức Duy
Xem chi tiết
Phan Dinh Quoc
14 tháng 6 2018 lúc 21:28

Ta có: \(a^2+b^2+c^2+d^2=a\left(b+c+d\right)\)

   \(\Leftrightarrow4\left(a^2+b^2+c^2+d^2\right)=4a\left(b+c+d\right)\)

   \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2=4ab+4ac+4ad\)

   \(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2=0\)

   \(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2=0\)

   \(\Leftrightarrow a-2b=0,a-2c=0,a-2d=0,a=0\)[4 ptrinh này bạn để trong dấu''{" ].

    \(\Leftrightarrow a=b=c=d=0\)

nguyễn thanh ngân
Xem chi tiết
alibaba nguyễn
18 tháng 11 2016 lúc 16:38

\(4\left(a^2+b^2+c^2+d^2\right)=4a\left(b+c+d\right)\)

\(\Leftrightarrow a^2+\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)=0\)

\(\Leftrightarrow a^2+\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2=0\)

\(\Leftrightarrow a=a-2b=a-2c=a-2d=0\)

\(\Leftrightarrow a=b=c=d=0\)

Nam Trần
Xem chi tiết
Huỳnh Quang Sang
18 tháng 9 2019 lúc 21:08

\(a^2+b^2+c^2+d^2=a(b+c+d)\)

Nhân cả hai vế phương trình với 4 :

\(4a^2+4b^2+4c^2+4d^2=4ab+4ac+4ad\)

\(\Leftrightarrow a^2+a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2=0\)

\(\Leftrightarrow a^2+(a-2b)^2+(a-2c)^2+(a-2d)^2=0\)

\(\Leftrightarrow a=b=c=d=0\)

Nguyễn Huy Việt
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2021 lúc 17:39

\(\left(c;d\right)\Rightarrow\left(-c;-d\right)\)

\(\left(a-1\right)^2+\left(b-1\right)^2=1\)

\(\left(c-5\right)^2+\left(d-5\right)^2=100\)

Gọi \(A\left(a;b\right)\) thuộc đường tròn có pt \(\left(x-1\right)^2+\left(y-1\right)^2=1\) (C) có tâm \(I\left(1;1\right)\) bán kính \(R=1\)

\(B\left(d;c\right)\) thuộc đường tròn có pt \(\left(x-5\right)^2+\left(y-5\right)^2=100\) (C') có tâm \(I'\left(5;5\right)\) bán kính \(R=10\)

\(\Rightarrow AB^2=P=\left(a-d\right)^2+\left(b-c\right)^2\)

\(P_{min}\Leftrightarrow A;B\) là giao điểm nằm cùng phía so với I và I' của đường thẳng II' với 2 đường tròn

Phương trình II': \(x-y=0\)

\(\Rightarrow A\left(\dfrac{2-\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right)\) ; \(B\left(5-5\sqrt{2};5-5\sqrt{2}\right)\)

\(\Rightarrow P_{min}=AB=\dfrac{9\sqrt{2}-8}{\sqrt{2}}=9-4\sqrt{2}\)

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2022 lúc 21:34

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

Nguyễn Hải Băng
Xem chi tiết
Nguyễn Huy Tú
17 tháng 8 2016 lúc 21:42

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

Lightning Farron
17 tháng 8 2016 lúc 21:47

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

Lightning Farron
17 tháng 8 2016 lúc 21:41

Bài 2:

a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

Với \(\frac{a}{2}=-3\Rightarrow a=-6\)

Với \(\frac{b}{3}=-6\Rightarrow b=-18\)

Với \(\frac{c}{4}=-6\Rightarrow c=-24\)

Với \(\frac{d}{5}=-6\Rightarrow d=-30\)

Trần Nga
Xem chi tiết
pham thi tho
27 tháng 5 2017 lúc 21:44

theo cong thuc  x1 x2

Kuuhaku
Xem chi tiết
Nguyễn Tất Đạt
2 tháng 9 2018 lúc 17:40

Ta có: \(a^2+b^2+c^2+d^2\ge4\sqrt[4]{\left(abcd\right)^2}=4\)(AM-GM) (abcd=1)

Lại có: \(a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\)

\(=ab+ac+bc+bd+cd+ac+ad+bd\)

\(\ge8\sqrt[8]{\left(abcd\right)^4}=8\)(AM-GM)

Từ đó: 

\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge4+8=12\)

=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=d=1.