9n^2 + 2n-5 :3n - 2
16n^2 - 3 : 4n +1
Giúp mình đc ko mình cần gấp ngày mai nộp rồi T^T thank
Lim căn 9n^+2n+n-2/căn 4n^+1
Lim n/căn 4n^+2+căn n^
Lim căn 4n+2- căn 2n-5/căn n+3
Lim căn 4n^+n+1-n/n^+2
Lim căn 9n^+n+1-2n/3n^+2
\(lim\frac{\sqrt{9n^2+2n}+n-2}{\sqrt{4n^2+1}}=lim\frac{\sqrt{9+\frac{2}{n}}+1-\frac{2}{n}}{\sqrt{4+\frac{1}{n^2}}}=\frac{\sqrt{9}+1}{\sqrt{4}}=2\)
\(lim\frac{n}{\sqrt{4n^2+2}+\sqrt{n^2}}=lim\frac{1}{\sqrt{4+\frac{2}{n^2}}+\sqrt{1}}=\frac{1}{\sqrt{4}+\sqrt{1}}=\frac{1}{3}\)
\(lim\frac{\sqrt{4n+2}-\sqrt{2n-5}}{\sqrt{n+3}}=lim\frac{\sqrt{4+\frac{2}{n}}-\sqrt{2-\frac{5}{n}}}{\sqrt{1+\frac{3}{n}}}=\frac{2-\sqrt{2}}{1}=2-\sqrt{2}\)
l\\(lim\frac{\sqrt{4n^2+n+1}-n}{n^2+2}=lim\frac{\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}-1}{n+\frac{2}{n}}=\frac{1}{\infty}=0\)
\(lim\frac{\sqrt{9n^2+n+1}-2n}{3n^2+2}=\frac{\sqrt{9+\frac{1}{n}+\frac{1}{n^2}}-2}{3n+\frac{2}{n}}=\frac{1}{\infty}=0\)
Muốn giúp bạn lắm mà ko sao dịch được đề :D
Bạn sử dụng công cụ gõ công thức, nó ở ngoài cùng bên trái khung soạn thảo, chỗ khoanh đỏ ấy, cực dễ sử dụng
lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
lim \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\)
lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
1.Tìm x thuộc z biết:
a)4n^2+2n+7 chia hết 2n+1
b)4n^2+4n+12 chia hết 2n+1
c)9n^2-12n+3 chia hết 3n-2
d)5n^2-n+14 chia hết 5n-1
Chứng minh rằng
a)n+3/n+4
b)3n+3/9n+8
c)4n+3/5n+4
d)n+1/2n+3
e)2n+3/4n+8
f)3n+2/5n+3
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
1) Tìm n thuộc Z biết:
a) 4n + 1 / 2n+3
b ) 12n + 7/ 4n+7
c) 9n+4 / 3n+5
Tìm n thuộc Z biết:
a) 4n + 1 / 2n+3
b ) 12n + 7/ 4n+7
c) 9n+4 / 3n+5
Tìm n thuộc Z biết:
a) 4n+1/2n+3
b) 12n+7 / 4n+7
c) 9n+4 / 3n+5
a) Ta có :4n+1 = 4n + 6 - 5 = 2(2n+3) - 5.Vì 2(2n+3) chia hết cho 2n+3 nên để thỏa mãn đề thì 5 chia hết cho 2n+3 => 2n+3 \(\in\left\{-5;-1;1;5\right\}\)=> 2n\(\in\left\{-8;-4;-2;2\right\}\)=> n\(\in\left\{-4;-2;-1;1\right\}\)
b) Ta có : 12n+7 = 12n + 21 - 14 = 3(4n+7) - 14.Vì 3(4n+7) chia hết cho 4n+7 nên để thỏa mãn đề thì 14 chia hết cho 4n+7 => 4n+7\(\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
=> 4n\(\in\left\{-21;-14;-9;-8;-6;-5;0;7\right\}\) => n\(\in\left\{-2;0\right\}\)
c) Ta có : 9n+4 = 9n + 15 - 11 = 3(3n+5) - 11.Vì 3(3n+5) chia hết cho 3n+5 nên để thỏa mãn đề thì 11 chia hết cho 3n+5 => 3n+5 \(\in\left\{-11;-1;1;11\right\}\)=> 3n \(\in\left\{-16;-6;-4;6\right\}\)=> n \(\in\left\{-2;2\right\}\)
câu hỏi tương tự nha bn vào đó có mà
Tìm n thuộc Z để các biểu thức sau có giá trị nguyên:
B=9n+a/3n-2 ; C=2n+1/4n+6 ; D= 2n+1/n-3.
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
A=-15÷x-2; B =9n+4÷3n-2 ; C=2n+1÷4n+6; D=2x+1÷x+3 với n,x là thuộc z , có giá trị nguyên
Mọi người trả lời giúp mình . Mình cần gấp lắm